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Abstract

The present thesis is devoted to the study of biharmonic submanifolds in real, complex
and Sasakian space forms. First, we shall present some ideas that have encouraged the
study of the biharmonic submanifolds and of the geometry of biharmonic maps, and
then we shall describe the results gathered in the thesis.

Denote by C∞(M, N) the space of smooth maps ϕ : (M, g) → (N,h) between two
Riemannian manifolds. A map ϕ ∈ C∞(M, N) is called harmonic if it is a critical point
of the energy functional

E : C∞(M, N) → R, E(ϕ) =
1
2

∫

M
|dϕ|2 vg,

and it is characterized by the vanishing of the tension field

τ(ϕ) = trace∇dϕ = 0.

The tension field is a smooth section in the pull-back bundle ϕ−1(TN). If ϕ : (M, g) →
(N,h) is a Riemannian immersion, then it is a critical point of the energy functional if
and only if it is a minimal immersion, i.e. a critical point of the volume functional (see
[60]).

One can generalize harmonic maps by considering the functional obtained by inte-
grating the squared norm of the tension field. More precisely, biharmonic maps are the
critical points of the bienergy functional

E2 : C∞(M, N) → R, E2(ϕ) =
1
2

∫

M
|τ(ϕ)|2 vg.

The associated Euler-Lagrange equation is given by the vanishing of the bitension field

τ2(ϕ) = −∆τ(ϕ)− traceRN (dϕ(·), τ(ϕ))dϕ(·) = 0. (0.1)

Obviously, harmonic maps are biharmonic. Biharmonic non-harmonic maps are called
proper-biharmonic.

The above variational problem and the Willmore problem (see [134]) produce natural
generalizations of harmonic maps and, respectively, minimal immersions. Nevertheless,
biharmonic Riemannian immersions do not recover Willmore immersions, not even when
the ambient space is Rn.
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The theory of biharmonic maps is an old and rich subject, initially studied due to its
implications in the theory of elasticity and fluid mechanics. G.B. Airy and J.C. Maxwell
were the first to study and express plane elastic problems in terms of the biharmonic
equation (see [1, 94]). Later on, the theory evolved with the study of polyharmonic func-
tions developed by E. Almansi, T. Levi-Civita, M. Nicolaescu. Biharmonic and polyhar-
monic functions on Riemannian manifolds were studied by R. Caddeo and L. Vanheke
[28, 35], L. Sario et all (see [117]) and others.

Biharmonic maps have been extensively studied in the last decade and there are two
main research directions. On the one hand, in differential geometry, a special attention
has been payed to the construction of examples and classification results. Results in
this direction were obtained, for example, by P. Baird [11, 12], H. Urakawa [77, 78, 128],
Y.-L. Ou [110]–[113] and in [4, 14, 21, 22, 27, 29, 30, 33, 34, 42, 46, 58, 79, 127, 139].

On the other hand, from the analytic point of view, biharmonic maps are solutions
of a fourth order strongly elliptic semilinear PDE and the study of their regularity
is nowadays a well-developed field. Contributions in this direction were made by S.-
Y.A. Chang [38], T. Lamm [84, 85], R. Moser [99, 100], P. Strzelecki [122], C. Wang
[131, 132], etc.

It was proved in [61] that there exists no harmonic map from T2 to S2 (whatever
the metrics chosen) in the homotopy class of Brower degree ±1. The biharmonic maps
are expected to exist where harmonic maps do not.

The interest in the theory of biharmonic maps crossed the border of differential
geometry and analysis of PDE’s. In computational geometry, more precisely in the
field of boundary based surface design, the biharmonic Bézier surfaces are studied (see
[82, 96, 97]).

The variational problem associated by considering, for a fixed map, the bienergy
functional defined on the set of Riemannian metrics on the domain gave rise to the
biharmonic stress-energy tensor (see [90]). This proved to be useful for obtaining new
examples of proper-biharmonic maps and for the study of submanifolds with certain
geometric properties, like pseudo-umbilical and parallel submanifolds.

In his studies on finite type submanifolds (see [44]), B-Y. Chen defined biharmonic
Riemannian immersions, i.e. biharmonic submanifolds, in the Euclidean space as those
with harmonic mean curvature vector field, that is ∆H = 0, where ∆ is the rough
Laplacian. By considering the definition of biharmonic maps for Riemannian immersions
into the Euclidean space Rn one recovers the notion of biharmonic submanifolds in the
sense of B-Y. Chen. Although the results obtained by B-Y. Chen and his collaborators
on proper-biharmonic submanifolds in Euclidean spaces are non-existence results, i.e.
the only biharmonic submanifolds are the minimal ones, their techniques were adapted
and led to classification results for proper-biharmonic submanifolds in Euclidean spheres
where the family of such submanifolds is rather rich.

The differential geometric aspect of biharmonic submanifolds was also studied in
the semi-Riemannian case (see, for example, [44, 46]).

In real space forms of nonpositive constant sectional curvature only non-existence
results for proper-biharmonic submanifolds are known (see, for example, [21, 29, 43,
46, 56, 58, 75]). In the case of real space forms of positive sectional curvature the
situation is completely different, and the first chapter of the present thesis concerns
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the classification of biharmonic submanifolds in the unit Euclidean sphere Sn. The key
ingredient is the characterization formula, obtained by splitting the bitension field in
its normal and tangent components, presented in the first section. The main examples
of proper-biharmonic submanifolds in Sn, together with their immediate properties, are
listed. The section ends with a partial classification result for biharmonic submanifolds
with constant mean curvature (CMC) in spheres. Taking this further, in the second
section we study the type of CMC proper biharmonic submanifolds in Sn and prove
that, depending on the value of the mean curvature, they are of 1-type or of 2-type
as submanifolds of Rn+1. In the third section, the proper biharmonic hypersurfaces
are studied from different points of view: first with respect to the number of their
distinct principal curvatures, then with respect to |A|2 and |H|2, and, finally, the study
is done with respect to the sectional, Ricci and scalar curvatures of the hypersurface.
All the obtained results are rigidity results, i.e. with the imposed restrictions, the
biharmonic hypersurfaces belong to the main classes of aforementioned examples. The
fourth section is devoted to the study of proper-biharmonic submanifolds with parallel
mean curvature vector field (PMC) in spheres, the main result of this section consisting
in a partial classification. Moreover, a full classification of PMC proper-biharmonic
submanifolds in spheres with parallel shape operator associated to the mean curvature
vector field is presented. The chapter ends with a list of Open Problems. The results
contained in this chapter can be found in [18]–[24].

Chapter 2 is devoted to the study of proper-biharmonic submanifolds in a com-
plex space form. This subject has already been started by several authors. In [53] some
pinching conditions for the second fundamental form and the Ricci curvature of a bihar-
monic Lagrangian submanifold of CPn, with parallel mean curvature vector field, were
obtained. In [119], the author gave a classification of biharmonic Lagrangian surfaces
of constant mean curvature in CP 2. Then, the characterization of biharmonic constant
mean curvature real hypersurfaces of CPn and the classification of proper-biharmonic
homogeneous real hypersurfaces of CPn were obtained in [77, 78]. Our main result in
Chapter 2 is a formula that relates the bitension field of a submanifold in CPn and
the bitension field of the associated Hopf cylinder (according to the Hopf fibration).
Using this formula, many examples of proper-biharmonic submanifolds in CPn were
obtained. In the 2-dimensional complex projective space, by using a result of S. Maeda
and T. Adachi, all proper-biharmonic curves were determined.

The Euclidean spheres proved to be a very giving environment for obtaining ex-
amples and classification results. Then, the fact that odd-dimensional spheres can
be thought as a class of Sasakian space forms (which do not have constant sectional
curvature, in general) led to the idea that another research direction would be the
study of biharmonic submanifolds in Sasakian space forms. Following this direction,
the proper-biharmonic Legendre curves and Hopf cylinders in a 3-dimensional Sasakian
space form were classified in [79], whilst in [71] their parametric equations were found.
In Chapter 3 we classify all proper-biharmonic Legendre curves in arbitrary dimen-
sional Sasakian space forms, and we present a method to obtain proper-biharmonic
anti-invariant submanifolds from proper-biharmonic integral submanifolds. Then, we
obtain classification results for proper-biharmonic hypersurfaces. In the last part, we
determine all 3-dimensional proper-biharmonic integral C-parallel submanifolds in a
7-dimensional Sasakian space form and then we find these submanifolds in the unit
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Euclidean 7-sphere endowed with its canonical and deformed Sasakian structures in-
troduced by S. Tanno in [125]. We end by classifying the proper-biharmonic parallel
Lagrangian submanifolds of CP 3 by determining their horizontal lifts, with respect to
the Hopf fibration, in S7(1).

Some of the techniques used in the thesis are based on those developed by D. Blair,
B-Y. Chen, F. Defever, M. do Carmo, J. Erbacher, J.D. Moore, K. Nomizu, P.J. Ryan,
S.-T. Yau, etc.



Rezumat

Lucrarea de faţă este dedicată studiului subvarietăţilor biarmonice în forme spaţiale
reale, complexe şi sasakiene. Vom prezenta, pentru început, unele idei care au incurajat
studiul subvarietăţilor biarmonice şi al geometriei aplicaţiilor biarmonice şi apoi vom
descrie rezultatele incluse în această teză.

Fie C∞(M, N) spaţiul aplicaţiilor netede ϕ : (M, g) → (N, h) între două varietăţi
riemanniene. O aplicaţie ϕ ∈ C∞(M, N) se numeşte armonică dacă este un punct critic
al funcţionalei energie

E : C∞(M, N) → R, E(ϕ) =
1
2

∫

M
|dϕ|2 vg,

şi este caracterizată de anularea câmpului de tensiune

τ(ϕ) = trace∇dϕ = 0.

Campul de tensiune este o secţiune netedă în fibratul pull-back ϕ−1(TN).
Dacă ϕ : (M, g) → (N, h) este o imersie riemanniană, atunci este un punct critic al

funcţionalei energie dacă şi numai dacă este o imersie minimală, adică un punct critic
al funcţionalei volum (vezi [60]).

Noţiunea de aplicaţie armonică poate fi generalizată considerând funcţionala obţin-
ută prin integrarea pătratului normei câmpului de tensiune. Mai exact, aplicaţiile biar-
monice sunt punctele critice ale funcţionalei bienergie

E2 : C∞(M, N) → R, E2(ϕ) =
1
2

∫

M
|τ(ϕ)|2 vg.

Ecuaţia Euler-Lagrange asociată este dată de anularea câmpului de bitensiune

τ2(ϕ) = −∆τ(ϕ)− traceRN (dϕ(·), τ(ϕ))dϕ(·) = 0.

Evident, aplicaţiile armonice sunt biarmonice. Aplicaţiile biarmonice şi nearmonice
sunt numite biarmonice proprii.

Problema variaţională de mai sus şi problema Willmore (vezi [134]) produc gen-
eralizări naturale ale noţiunii de aplicaţie armonică, respectiv imersie minimală. Însă
imersiile riemanniene biarmonice nu sunt imersii Willmore, nici măcar în cazul în care
spaţiul ambiant este Rn.
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Teoria aplicaţiilor biarmonice este un domeniu vechi şi bogat în rezultate, iniţial stu-
diat datorită implicaţiilor sale în teoria elasticităţii şi în mecanica fluidelor. G.B. Airy
şi J.C. Maxwell au fost primii care au studiat şi exprimat fenomene elastice plane in
termenii ecuaţiei biarmonice (vezi [1, 94]). Mai târziu, teoria a evoluat cu studiul funcţi-
ilor poliarmonice realizat de către E. Almansi, T. Levi-Civita, M. Nicolaescu. Funcţiile
biarmonice şi poliarmonice pe varietăţi riemanniene au fost studiate de R. Caddeo şi
L. Vanheke [28, 35], L. Sario et all [117] şi alţii.

Aplicaţiile biarmonice au fost intens studiate în ultimul deceniu şi există două direcţii
principale de cercetare. Pe de o parte, în geometria diferenţială, o atenţie deosebită a
fost acordată construcţiei de exemple şi rezultatelor de clasificare. Rezultate în această
direcţie au fost obţinute, de exemplu, de P. Baird [11, 12], H. Urakawa [77, 78, 128],
Y.-L. Ou [110]–[113] şi în [4, 14, 21, 22, 29, 30, 33, 34, 42, 46, 58, 79, 127, 139].

Pe de altă parte, din punct de vedere analitic, aplicaţiile biarmonice sunt soluţii
ale unui sistem eliptic semi-liniar de ordin 4 de ecuaţii cu derivate parţiale, iar studiul
regularităţii acestora este un domeniu de cercetare bine dezvoltat în prezent. Contribuţii
în această direcţie au fost aduse de către S.-Y.A. Chang [38], T. Lamm [84, 85], R. Moser
[99, 100], P. Strzelecki [122], C. Wang [131, 132], etc.

În [61] s-a demonstrat că nu există aplicaţii armonice de la T2 la S2 (indiferent
de metricile alese) în clasa de omotopie de grad Brower egal cu ±1. Se aşteaptă ca
aplicaţiile biarmonice să rezolve această problemă.

Interesul manifestat pentru aplicaţiile biarmonice a depăşit graniţele geometriei
diferenţiale şi ale analizei ecuaţiilor cu derivate parţiale. În geometria computaţio-
nală, mai precis în designul suprafeţelor de bord fixat, sunt intens studiate suprafeţele
Bézier biarmonice (vezi [82, 96, 97]).

Problema variaţională asociată considerând, pentru o aplicaţie fixată, funcţionala
bienergie definită pe mulţimea metricilor riemanniene pe domeniu a dat naştere ten-
sorului stress-energie biarmonic (vezi [90]). Acesta s-a dovedit util în construcţia de noi
exemple de aplicaţii biarmonice proprii şi în studiul subvarietăţilor cu anumite propri-
etăţi geometrice, cum ar fi subvarietăţile pseudo-ombelicale şi cele paralele.

În studiile sale asupra subvarietăţilor de tip finit (vezi [44]) B-Y. Chen a definit sub-
varietăţile biarmonice M ⊂ Rn ale spaţiului euclidian ca fiind acele subvarietăţi pentru
care câmpul vectorial curbură medie este armonic, i.e. ∆H = 0, unde ∆ este laplaceanul
pe mulţimea câmpurilor vectoriale tangente la Rn în lungul subvarietăţii M . Consid-
erând definiţia aplicaţiilor biarmonice pentru imersii riemanniene în spaţiul euclidian se
regăseşte noţiunea de subvarietate biarmonică în sensul lui B-Y. Chen. Notăm că toate
rezultatele obţinute de către Chen şi colaboratorii săi, pentru subvarietăţi biarmonice
în spaţiul euclidian, sunt rezultate de neexistenţă, adică biarmonicitatea implică mini-
malitate. Însă tehnicile acestora au fost adaptate şi au condus la rezultate de clasificare
pentru subvarietăţi biarmonice proprii în sfere, unde familia acestor subvarietăţi este
destul de bogată.

Aspectul geometric al aplicaţiilor şi subvarietăţilor biarmonice a fost tratat şi în
context pseudo-riemannian (vezi, de exemplu, [44, 46]).

Toate rezultatele obţinute privitoare la subvarietăţile biarmonice proprii în forme
spaţiale de curbură secţională negativă sunt de neexistenţă (vezi, de exemplu, [21, 29,
43, 46, 56, 58, 75]). În cazul formelor spaţiale de curbură secţională pozitivă situaţia
se dovedeşte a fi complet diferită, iar primul capitol al prezentei teze tratează problema
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clasificării subvarietăţilor biarmonice proprii ale sferei euclidiene unitare Sn. Ingredi-
entul cheie constă în formula de caracterizare obţinută prin descompunerea câmpului
de bitensiune în componentele sale, tangentă şi normală, prezentată în prima secţiune.
Sunt apoi prezentate principalele exemple de subvarietăţi biarmonice proprii în Sn, îm-
preună cu proprietăţile lor imediate. Secţiunea se încheie cu un rezultat de clasificare
parţială a subvarietăţilor biarmonice proprii de curbură medie constantă (CMC) în sfere.
S-a extins acest rezultat, studiând tipul subvarietăţilor CMC biarmonice proprii în Sn

şi s-a demonstrat că, în funcţie de valoarea curburii medii, acestea sunt fie de tip 1, fie
de tip 2 ca subvarietăţi în Rn+1. În a treia secţiune sunt studiate, din diferite puncte de
vedere, hipersuprafeţele biarmonice proprii: mai întâi ţinând cont de numărul de cur-
buri principale distincte, apoi în funcţie de |A|2 şi |H|2 şi, în final, studiul este realizat
ţinând cont de curbura secţională, curbura Ricci şi curbura scalară a hipersuprafeţei.
Toate rezultatele obţinute sunt rezultate de rigiditate, adică hipersuprafeţele biarmon-
ice aparţin claselor de exemple menţionate anterior. Secţiunea a patra este dedicată
studiului subvarietăţilor biarmonice proprii de câmp vectorial curbură medie paralel
(PMC) în sfere, principalul rezultat constând într-o clasificare parţială. Mai mult, este
prezentată clasificarea completă a subvarietăţilor PMC biarmonice proprii în sfere cu
operatorul formă asociat câmpului vectorial curbură medie paralel. Capitolul se încheie
cu o listă de Probleme Deschise. Rezultatele incluse în acest capitol pot fi găsite în
[18]–[24].

Capitolul 2 este dedicat studiului subvarietăţilor biarmonice proprii în forme spaţiale
complexe. Acest subiect a fost iniţiat de mai mulţi autori. În [53] au fost obţinute unele
condiţii de pinching asupra formei a doua fundamentale şi a curburii Ricci pentru o sub-
varietate biarmonică lagrangiană de curbură medie paralelă în CPn. În [119], autorul a
obţinut o clasificare a suprafeţelor lagrangiene biarmonice de curbură medie constantă în
CP 2. Apoi, în [77, 78], au fost obţinute caracterizarea hipersuprafeţelor reale biarmonice
de curbură medie constantă şi clasificarea hipersuprafeţelor reale omogene biarmonice
în CPn. Principalul nostru rezultat prezentat în Capitolul 2 este formula ce dă legă-
tura dintre câmpul de bitensiune al unei subvarietăţi în CPn şi câmpul de bitensiune al
cilindrului Hopf asociat (prin intermediul fibrării Hopf). Cu ajutorul acestei formule se
obţin numeroase exemple de subvarietăţi biarmonice proprii în CPn. Folosind un rezul-
tat obţinut de S. Maeda şi T. Adachi, se determină toate curbele biarmonice proprii în
spaţiul proiectiv complex 2-dimensional.

Sferele euclidiene s-au dovedit a fi un ambient foarte generos pentru obţinerea de
exemple şi rezultate de clasificare. Mai mult, faptul că sferele de dimensiune impară
pot fi privite ca o clasă de forme spaţiale sasakiene (care în general nu au curbura
secţională constantă) a condus la idea că o nouă direcţie de cercetare poate fi studiul
subvarietăţilor biarmonic în forme spaţiale sasakiene. Urmând această direcţie, în [79]
au fost clasificate curbele Legendre şi cilindrii Hopf biarmonici proprii în forme spaţiale
sasakiene 3-dimensionale, iar în [71] au fost determinate ecuaţiile parametrice ale aces-
tora. În Capitolul 3 se clasifică toate curbele Legendre biarmonice în forme spaţiale
sasakiene de dimensiune arbitrară şi se prezintă o metodă de construcţie a subvari-
etăţilor anti-invariante biarmonice proprii pornind de la subvarietăţi integrale biarmon-
ice proprii. Se obţin apoi rezultate de clasificare pentru hipersuprafeţe biarmonice
proprii. În ultima parte sunt determinate toate subvarietăţile integrale C-paralele, 3-
dimensionale, biarmonice proprii ale unei forme spaţiale sasakiene 7-dimensionale şi apoi
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sunt obţinute aceste subvarietăţi în sfera unitate 7-dimensională înzestrată cu structura
sasakiană canonică şi cu structurile sasakiene deformate introduse de S. Tanno în [125].
În încheiere se prezintă clasificarea subvarietăţilor lagrangiene paralele biarmonice pro-
prii în CP 3 prin determinarea lifturilor orizontale, în raport cu fibrarea Hopf, în S7(1).

Tehnicile folosite în această teză sunt bazate pe tehnici dezvoltate de D. Blair, B-
Y. Chen, F. Defever, M. do Carmo, J. Erbacher, J.D. Moore, K. Nomizu, P.J. Ryan,
S.-T. Yau, etc.
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Generalities

Conventions

Throughout this work all manifolds, metrics, maps are assumed to be smooth, i.e. in
the C∞ category. All manifolds are assumed to be connected.

The following sign convention is used for the curvature tensor field of a Riemannian
manifold (M, g)

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ],

where X,Y ∈ C(TM) are vector fields on M and ∇ is the Levi-Civita connection of the
manifold. Moreover, the Ricci tensor field Ricci and the scalar curvature s are defined
by

〈Ricci(X), Y 〉 = Ricci(X, Y ) = trace(Z → R(Z,X)Y )), s = trace Ricci,

where X, Y, Z ∈ C(TN).
For a map ϕ : M → N between two Riemannian manifolds, the rough Laplacian on

the pull-back bundle ϕ−1(TN) is defined by

∆ϕV = − trace(∇ϕ)2V,

where V ∈ C(ϕ−1(TN)) is a smooth section. Here ∇ϕ denotes the connection of
ϕ−1(TN) defined by the Levi-Civita connection of (N,h). When no confusion can
occur, we shall denote ∆ϕV by ∆V and ∇ϕV by ∇V .

Submanifolds in Riemannian manifolds

In order to fix the notations, we recall here only the fundamental equations of first
order for a submanifold in a Riemannian manifold. These equations define the second
fundamental form, the shape operator and the connection in the normal bundle.

Let ϕ : (M, g) → (N, h) be a Riemannian immersion. For each p ∈ M , Tϕ(p)N splits
as an orthogonal direct sum

Tϕ(p)N = dϕ(TpM)⊕ dϕ(TpM)⊥, (0.2)

and NM =
⋃

p∈M

dϕ(TpM)⊥ is referred to as the normal bundle of ϕ, or of M in N .

15
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Denote by ∇ and ∇N the Levi-Civita connections on M and N , respectively, and
by ∇ϕ the induced connection in the pull-back bundle ϕ−1(TN) =

⋃

p∈M

Tϕ(p)N . Taking

into account the decomposition in (0.2), one has

∇ϕ
Xdϕ(Y ) = dϕ(∇XY ) + B(X,Y ), ∀X,Y ∈ C(TM),

where B ∈ C(¯2T ∗M ⊗NM) is called the second fundamental form of M in N . Here
T ∗M denotes the cotangent bundle of M . The mean curvature vector field of M in N is
defined by H = (traceB)/m ∈ C(NM) and the mean curvature function of M is |H|.

Furthermore, if η ∈ C(NM), then

∇ϕ
Xη = −dϕ(Aη(X)) +∇⊥Xη, ∀X ∈ C(TM),

where Aη ∈ C(T ∗M⊗TM) is called the shape operator of M in N in the direction of η,
and ∇⊥ is a connection on sections of NM , called the induced connection in the normal
bundle. Moreover, 〈B(X, Y ), η〉 = 〈Aη(X), Y 〉, for all X, Y ∈ C(TM), η ∈ C(NM).

When confusion is unlikely, locally, we identify M with its image, X with dϕ(X)
and we replace ∇ϕ

Xdϕ(Y ) with ∇N
XY . With these identifications in mind, we write

∇N
XY = ∇XY + B(X,Y ),

and
∇N

Xη = −Aη(X) +∇⊥Xη.

We shall assume that the Gauss, Codazzi and Ricci equations are known.



Chapter 1
Classification results for
biharmonic submanifolds in Sn

1.1 Introduction

Let ϕ : M → (N, h) be a Riemannian immersion of a manifold M into a Riemannian
manifold (N, h). We say that ϕ is biharmonic, or M is a biharmonic submanifold, if its
mean curvature vector field H satisfies the following equation

τ2(ϕ) = −m
(
∆H + traceRN (dϕ(·),H)dϕ(·)) = 0, (1.1)

where ∆ denotes the rough Laplacian on sections of the pull-back bundle ϕ−1(TN) and
RN denotes the curvature operator on (N, h).

Obviously, any minimal immersion, i.e. H = 0, is biharmonic. The non-harmonic
biharmonic immersions are called proper-biharmonic.

The study of proper-biharmonic submanifolds is nowadays becoming a very active
subject and its popularity initiated with the challenging conjecture of B-Y. Chen (see
the recent book [39]): any biharmonic submanifold in the Euclidean space is minimal.

Chen’s conjecture was generalized to: any biharmonic submanifold in a Riemannian
manifold with nonpositive sectional curvature is minimal, but this was proved not to be
true. Indeed, in [113], Y.-L. Ou and L. Tang constructed examples of proper-biharmonic
hypersurfaces in a 5-dimensional space of non-constant negative sectional curvature.

Yet, the conjecture is still open in its full generality for ambient spaces with con-
stant nonpositive sectional curvature, although it was proved to be true in numerous
cases when additional geometric properties for the submanifolds were assumed (see, for
example, [21, 29, 43, 56, 58, 75]).

By way of contrast there are several families of examples of proper-biharmonic sub-
manifolds in the n-dimensional unit Euclidean sphere Sn. For simplicity we shall denote
these classes by B1, B2, B3 and B4.

The goal of this chapter is to present the results obtained until now for proper-
biharmonic submanifolds in Sn. The main purpose, which we are working for, is to
obtain the complete classification of proper-biharmonic submanifolds in Sn. This pro-
gram was initiated for the very first time in [80] and then developed in [17] – [24],
[29, 30, 102, 103, 109].

17
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At the beginning of the chapter, two important properties of proper-biharmonic
submanifolds in Sn are presented: if the mean curvature |H| of such a submanifold is
constant, then it is bounded, |H| ∈ (0, 1]; and the submanifold, now as a submanifold
of the ambient space Rn+1, is of 1-type if |H| = 1, or of 2-type if |H| ∈ (0, 1).

In this chapter, by a rigidity result for proper-biharmonic submanifolds we mean:
find under what conditions a proper-biharmonic submanifold in Sn is one of the main
examples B1, B2, B3 and B4.

We prove rigidity results for the following types of submanifolds in Sn: hypersur-
faces with at most two distinct principal curvatures everywhere, constant mean curva-
ture (CMC) compact hypersurfaces with three distinct principal curvatures everywhere,
Dupin hypersurfaces; hypersurfaces, both compact and non-compact, with bounded
norm of the second fundamental form; hypersurfaces satisfying intrinsic geometric prop-
erties; parallel mean curvature vector field (PMC) submanifolds; parallel submanifolds.
In the study of complete non-compact proper-biharmonic hypersurfaces with bounded
norm of the second fundamental form we used the Omori-Yau Maximum Principle.

We note that, for compact proper-biharmonic hypersurfaces with bounded norm of
the second fundamental form an interesting connection can be made with the case of
minimal hypersurfaces with the same property.

Moreover, we include in this chapter two results of J.H. Chen published in [48], in
Chinese. We give a complete proof of these results using the invariant formalism and
shortening the original proofs.

1.2 Biharmonic submanifolds in Sn

The key ingredient in the study of biharmonic submanifolds is the splitting of the
bitension field with respect to its normal and tangent components. In the case when
the ambient space is the unit Euclidean sphere we have the following characterization.

Theorem 1.1 ([44, 109]). An immersion ϕ : Mm → Sn is biharmonic if and only if





∆⊥H + traceB(·, AH ·)−mH = 0,

2 traceA∇⊥
(·)H

(·) +
m

2
grad |H|2 = 0,

(1.2)

where A denotes the Weingarten operator, B the second fundamental form, H the mean
curvature vector field, |H| the mean curvature function, ∇⊥ and ∆⊥ the connection and
the Laplacian in the normal bundle of ϕ, respectively.

Proof. From (1.1), the map ϕ is biharmonic if and only if

∆H −mH = 0. (1.3)

Consider now {Ei}m
i=1 to be a local orthonormal frame field on M , geodesic at p ∈ M .
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With the usual local identification of M with ϕ(M), at p we have

∆H = −
m∑

i=1

∇Sn

Ei
∇Sn

Ei
H = −

m∑

i=1

{∇Sn

Ei
(∇⊥Ei

H −AH(Ei))}

= −
m∑

i=1

{∇⊥Ei
∇⊥Ei

H −A∇⊥Ei
H(Ei)−∇EiAH(Ei)−B(Ei, AH(Ei))}

= ∆⊥H + traceB(·, AH ·) + traceA∇⊥
(·)H

(·) + trace∇AH .

Also,

m∑

i=1

∇EiAH(Ei) =
∑

i,j

〈∇EiAH(Ei), Ej〉Ej =
∑

i,j

Ei〈AH(Ei), Ej〉Ej

=
∑

i,j

Ei〈B(Ei, Ej), H〉Ej =
∑

i,j

Ei〈∇Sn

Ej
Ei, H〉Ej

=
∑

i,j

{〈∇Sn

Ei
∇Sn

Ej
Ei,H〉+ 〈∇Sn

Ej
Ei,∇Sn

Ei
H〉}Ej

=
∑

i,j

{〈∇Sn

Ei
∇Sn

Ej
Ei,H〉+ 〈B(Ei, Ej),∇⊥Ei

H〉}Ej

=
∑

i,j

〈∇Sn

Ei
∇Sn

Ej
Ei,H〉+

∑

i

A∇⊥Ei
H(Ei)

and, since at p,

m∑

i=1

〈∇Sn

Ei
∇Sn

Ej
Ei,H〉 =

m∑

i=1

〈RSn

(Ei, Ej)Ei +∇Sn

Ej
∇Sn

Ei
Ei +∇Sn

[Ei,Ej ]
Ei,H〉

= 〈−mcEj , H〉+
m∑

i=1

〈∇Sn

Ej
B(Ei, Ei),H〉 = m〈∇Sn

Ej
H, H〉

=
m

2
Ej(|H|2),

we get

m∑

i=1

{A∇⊥Ei
H(Xi) +∇EiAH(Ei)} = 2

m∑

i=1

A∇⊥Ei
H(Ei) +

m

2
(d|H|2)]

= 2 traceA∇⊥
(·)H

(·) +
m

2
grad(|H|2).

Thus, by replacing the expression for ∆H in (1.3) we obtain that ϕ is biharmonic
if and only if

−∆⊥H − traceB(·, AH ·) + mcH = 2 traceA∇⊥
(·)H

(·) +
m

2
grad(|H|2). (1.4)

Since the left hand side of (1.4) is normal, and the right hand side is tangent to M , we
conclude.
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In the codimension one case, denoting by A = Aη the shape operator with respect
to a (local) unit section η in the normal bundle and putting f = (traceA)/m, the above
result reduces to the following.

Corollary 1.2 ([109]). Let ϕ : Mm → Sm+1 be an orientable hypersurface. Then ϕ is
biharmonic if and only if





(i) ∆f = (m− |A|2)f,

(ii) A(grad f) = −m

2
f grad f.

(1.5)

A special class of immersions in Sn consists of the parallel mean curvature immer-
sions (PMC), that is immersions such that ∇⊥H = 0. For this class of immersions
Theorem 1.1 reads as follows.

Corollary 1.3 ([23]). Let ϕ : Mm → Sn be a PMC immersion. Then ϕ is biharmonic
if and only if

traceB(AH(·), ·) = mH, (1.6)

or equivalently, 


〈AH , Aξ〉 = 0, ∀ξ ∈ C(NM)with ξ ⊥ H,

|AH |2 = m|H|2,
(1.7)

where NM denotes the normal bundle of M in Sn.

We now list the main examples of proper-biharmonic immersions in Sn.

B1. The canonical inclusion of the small hypersphere

Sn−1(1/
√

2) =
{

(x, 1/
√

2) ∈ Rn+1 : x ∈ Rn, |x|2 = 1/2
}
⊂ Sn. (1.8)

B2. The canonical inclusion of the standard (extrinsic) products of spheres

Sn1(1/
√

2)× Sn2(1/
√

2) =
{
(x, y) ∈ Rn1+1 × Rn2+1, |x|2 = |y|2 = 1/2

} ⊂ Sn,
(1.9)

n1 + n2 = n− 1 and n1 6= n2.

B3. The maps ϕ = ı◦φ : M → Sn, where φ : M → Sn−1(1/
√

2) is a minimal immersion,
and ı : Sn−1(1/

√
2) → Sn denotes the canonical inclusion.

B4. The maps ϕ = ı ◦ (φ1 × φ2) : M1 × M2 → Sn, where φi : Mmi
i → Sni(1/

√
2),

0 < mi ≤ ni, i = 1, 2, are minimal immersions, m1 6= m2, n1 + n2 = n − 1, and
ı : Sn1(1/

√
2)× Sn2(1/

√
2) → Sn denotes the canonical inclusion.

Remark 1.4. (i) The proper-biharmonic immersions of classB3 are pseudo-umbilical,
i.e. AH = |H|2 Id, have parallel mean curvature vector field and mean curvature
|H| = 1. Clearly, ∇AH = 0.



1.2. Biharmonic submanifolds in Sn 21

(ii) The proper-biharmonic immersions of class B4 are no longer pseudo-umbilical,
but still have parallel mean curvature vector field and their mean curvature is
|H| = |m1 −m2|/m ∈ (0, 1), where m = m1 + m2. Moreover, ∇AH = 0 and
the principal curvatures in the direction of H, i.e. the eigenvalues of AH , are
constant on M and given by λ1 = . . . = λm1 = (m1 −m2)/m, λm1+1 = . . . =
λm1+m2 = −(m1 −m2)/m. Specific B4 examples were given by W. Zhang in [139]
and generalized in [20, 133].

Example B2 was found in [80], while Example B1 was derived in [30]. The two
families of examples described in Example B3 and Example B4 were constructed in
[29]. Moreover, Example B3 is a consequence of the following property.

Theorem 1.5 ([29]). Let ψ : M → Sn−1(a) be a minimal submanifold in a small
hypersphere Sn−1(a) ⊂ Sn, of radius a ∈ (0, 1), and denote by ı : Sn−1(a) → Sn the
inclusion map. Then ϕ = ı ◦ψ : M → Sn is proper-biharmonic if and only if a = 1/

√
2.

Example B4 is a consequence of the following result.

Theorem 1.6 ([29]). Let ψ1 : Mm1
1 → Sn1(a) and ψ2 : Mm2

2 → Sn2(b) be two minimal
submanifolds, where n1 +n2 = n−1, a2 +b2 = 1, and denote by ı : Sn1(a)×Sn2(b) → Sn

the inclusion map. Then ϕ = ı ◦ (ψ1×ψ2) : M1×M2 → Sn is proper-biharmonic if and
only if a = b = 1/

√
2 and m1 6= m2.

When a biharmonic immersion has constant mean curvature (CMC) the following
bound for |H| holds.
Theorem 1.7 ([108]). Let ϕ : M → Sn be a CMC proper-biharmonic immersion. Then
|H| ∈ (0, 1], and |H| = 1 if and only if ϕ induces a minimal immersion of M into
Sn−1(1/

√
2) ⊂ Sn, that is ϕ is B3.

Proof. Let M be a CMC biharmonic submanifold of Sn. The first equation of (1.2)
implies that

〈∆⊥H, H〉 = m|H|2 − |AH |2,
and by using the Weitzenböck formula,

1
2
∆|H|2 = 〈∆⊥H, H〉 − |∇⊥H|2,

we obtain
m|H|2 = |AH |2 + |∇⊥H|2. (1.10)

Let now {Xi} be a local orthonormal basis such that AH(Xi) = λiXi. From

λi = 〈AH(Xi), Xi〉 = 〈B(Xi, Xi),H〉

and ∑
λi = m|H|2,

∑
(λi)2 = |AH |2,

using (1.10) we obtain

∑
λi =

∑
(λi)2 + |∇⊥H|2 ≥ (

∑
λi)2

m
+ |∇⊥H|2. (1.11)



22 Chapter 1. Classification results for biharmonic submanifolds in Sn

Thus
m|H|2 ≥ m|H|4 + |∇⊥H|2.

Consequently, if |H| > 1, the last inequality leads to a contradiction.

If |H| = 1, then the last inequality implies ∇⊥H = 0 and
∑

(λi)2 =
(
∑

λi)2

m
= m,

thus we get λ1 = . . . = λm. Therefore M is PMC and pseudo-umbilical in Sn. This
implies that M is a minimal submanifold of a hypersphere Sn−1(a) ⊂ Sn (see, for
example, [45]), and from Theorem 1.5 we conclude.

1.3 On the type of biharmonic submanifolds in Sn

Definition 1.8 ([42, 44]). A submanifold φ : M → Rn+1 is called of finite type if it can
be expressed as a finite sum of Rn+1-valued eigenmaps of the Laplacian ∆ of M , i.e.

φ = φ0 + φt1 + . . . + φtk , (1.12)

where φ0 ∈ Rn+1 is a constant vector, φti : M → Rn+1 are non-constant maps satisfying
∆φti = λtiφti , i = 1, . . . , k. If, in particular, all eigenvalues λti are assumed to be
mutually distinct, the submanifold is said to be of k-type and (1.12) is called the spectral
decomposition of φ.

Remark 1.9. If M is compact the immersion φ : M → Rn+1 admits a unique spectral
decomposition φ = φ0 +

∑∞
i=1 φi, where φ0 is the center of mass. Then, it is of k-type

if only k terms of {φi}∞i=1 are not vanishing. In the non-compact case the spectral
decomposition φ = φ0 +

∑∞
i=1 φi is not guaranteed. Nonetheless, if Definition 1.8 is

satisfied, the spectral decomposition is unique. Notice also that, in the non-compact
case, the harmonic component of the spectral decomposition is not necessarily constant.
Finite type submanifolds with non-constant harmonic component are called null finite
type submanifolds.

The following result provides us a necessary and a sufficient condition for a subman-
ifold to be of finite type.

Theorem 1.10 ([44, 47]). Let φ : M → Rn+1 be a Riemannian immersion.

(i) If M is of finite k-type, there exist a constant vector φ0 ∈ Rn+1 and a monic
polynomial with simple roots P of degree k with P (∆)(φ− φ0) = 0.

(ii) If there exist a constant vector φ0 ∈ Rn+1 and a polynomial P with simple roots
such that P (∆)(φ− φ0) = 0, then M is of finite k-type with k ≤ degree(P ).

The following version shall also be used.

Theorem 1.11 ([44, 47]). Let φ : M → Rn+1 be a Riemannian immersion.

(i) If M is of finite k-type, there exists a monic polynomial P of degree k − 1 or k
with P (∆)H0 = 0 .

(ii) If there exists a polynomial P with simple roots such that P (∆)H0 = 0, then M
is of infinite type or of finite k-type with k − 1 ≤ degree(P ).
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Here H0 denotes the mean curvature vector field of M in Rn+1.

A well known result of T. Takahashi can be rewritten as the classification of 1-type
submanifolds in Rn+1.

Theorem 1.12 ([124]). A submanifold φ : M → Rn+1 is of 1-type if and only if either
φ is a minimal immersion in Rn+1, or φ induces a minimal immersion of M in a
hypersphere of Rn+1.

Definition 1.13. A submanifold ϕ : M → Sn is said to be of finite type if it is of finite
type as a submanifold of Rn+1, where Sn is canonically embedded in Rn+1. Moreover,
a non-null finite type submanifold in Sn is said to be mass-symmetric if the constant
vector φ0 of its spectral decomposition is the center of the hypersphere Sn, i.e. φ0 = 0.

Remark 1.14. By Theorem 1.12, biharmonic submanifolds of class B3 are 1-type
submanifolds. Indeed, the immersion φ : M → Rn+1 of M in Rn+1 has the spectral
decomposition

φ = φ0 + φp,

where φ0 = (0, 1/
√

2), φp : M → Rn+1, φp(x) = (ψ(x), 0) and ∆φp = 2mφp.
Moreover, biharmonic submanifolds of class B4 are mass-symmetric 2-type subman-

ifolds. Indeed, φ : M1 ×M2 → Rn+1 has the spectral decomposition

φ = φp + φq,

where φp(x, y) = (ψ1(x), 0), φq(x, y) = (0, ψ2(y)), ∆φp = 2m1φp, ∆φq = 2m2φq.

Let ϕ : M → Sn be a submanifold in Sn and denote by φ = i ◦ ϕ : M → Rn+1 the
immersion of M in Rn+1. Denote by H the mean curvature vector field of M in Sn and
by H0 the mean curvature vector field of M in Rn+1.

The mean curvature vector fields H0 and H are related by H0 = H − φ. Moreover,
we have

〈H,φ〉 = 0, 〈H0,H〉 = |H|2, 〈H0, φ〉 = −1. (1.13)

Following [29], the bitension field of ϕ can be written as

τ2(ϕ) = −m∆H0 + 2m2H0 + m2{2− |H0|2}φ.

Thus, τ2(ϕ) = 0 if and only if

∆H0 − 2mH0 + m(|H|2 − 1)φ = 0. (1.14a)

or equivalently, since ∆φ = −mH0,

∆2φ− 2m∆φ−m2(|H|2 − 1)φ = 0, (1.14b)

In [21, Theorem 3.1] we proved that CMC compact proper biharmonic submanifolds
in Sn are of 1-type or 2-type. This result can be generalized to the following.

Theorem 1.15 ([17]). Let ϕ : M → Sn be a proper-biharmonic submanifold, not
necessarily compact, in the unit Euclidean sphere Sn. Denote by φ = i ◦ ϕ : M → Rn+1

the immersion of M in Rn+1, where i : Sn → Rn+1 is the canonical inclusion map.
Then
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(i) M is a 1-type submanifold if and only if |H| = 1. In this case, φ = φ0 + φp,
∆φp = 2mφp, and φ0 ∈ Rn+1, |φ0| = 1/

√
2.

(ii) M is a 2-type submanifold if and only if |H| = constant, |H| ∈ (0, 1). In this
case, φ = φp + φq, ∆φp = m(1− |H|)φp, ∆φq = m(1 + |H|)φq.

Proof. In order to prove (i), notice that the converse is obvious, by Theorem 1.12 and
Theorem 1.7.

Let us suppose that M is a 1-type submanifold. From Theorem 1.11(i) follows that
there exists a ∈ R such that

∆H0 = aH0. (1.15)

Equations (1.14a) and (1.15) imply

(2m− a)H0 −m(|H|2 − 1)φ = 0,

and by considering the scalar product with H and using (1.13), since M is proper-
biharmonic, we get a = 2m and

m(|H|2 − 1)φ = 0.

Thus |H| = 1. Now, as the map φ can not be harmonic, (1.14b) leads to the spectral
decomposition φ = φ0 + φp, ∆φp = 2mφp. Since ∆φ = −mH0, taking into account the
relation between H and H0, we obtain 2φ0 = φ + H. Since |φ| = 1 = |H|, and H is
orthogonal to φ, we conclude that |φ0| = 1/

√
2.

Let us now prove (ii). The converse of (ii) follows immediately. Indeed, from (1.14b),
if |H| = constant, |H| ∈ (0, 1), then choosing the constant vector φ0 = 0 and the
polynomial with simple roots

P (∆) = ∆2 − 2m∆1 −m2(|H|2 − 1)∆0,

we are in the hypotheses of Theorem 1.10(ii). Thus M is of finite k-type, with k ≤ 2.
Taking into account (i), since |H| ∈ (0, 1), this implies that M is a 2-type submanifold
with

φ = φp + φq,

with corresponding eigenvalues λp = m(1− |H|), λq = m(1 + |H|). Also, notice that

φp =
λq

λq − λp
φ− 1

λq − λq
∆φ, φq = − λp

λq − λp
φ +

1
λq − λq

∆φ,

which are smooth non-zero maps.
Suppose now that M is a 2-type submanifold. From Theorem 1.10(i) follows that

there exist a constant vector φ0 ∈ Rn+1 and a, b ∈ R such that

∆H0 = aH0 + b(φ− φ0). (1.16)

Equations (1.14a) and (1.16) lead to

(2m− a)H0 − (m(|H|2 − 1) + b)φ + bφ0 = 0. (1.17)
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We have to consider two cases.
Case 1. If b = 0, i.e. M is a null 2-type submanifold, by taking the scalar product
with H in (1.17) and using (1.13), since M is proper biharmonic, we get a = 2m and
|H| = 1. By (i), this leads to a contradiction.
Case 2. If b 6= 0, we shall prove that grad |H|2 = 0 on M , and therefore |H| is constant
on M . Indeed, locally, by taking the scalar product with X ∈ C(TU) in (1.17), we
obtain 〈φ0, X〉 = 0, for all X ∈ C(TU), i.e. the component of φ0 tangent to U vanishes

(φ0)> = 0, (1.18)

where U denotes an arbitrarily open set in M . Take now the scalar product with φ in
(1.17) and use (1.13). We obtain

−2m + a−m(|H|2 − 1)− b + b〈φ0, φ〉 = 0,

and, by differentiating,
m grad |H|2 = b grad〈φ0, φ〉. (1.19)

Now, by considering {Ei}m
i=1 to be a local orthonormal frame field on U , we have

grad〈φ0, φ〉 =
m∑

i=1

Ei(〈φ0, φ〉)Ei =
m∑

i=1

〈φ0,∇0
Ei

φ〉Ei =
m∑

i=1

〈φ0, Ei〉Ei

= (φ0)>. (1.20)

This, together with equations (1.18) and (1.19), leads to grad |H|2 = 0 on U .
Now, as |H| is constant on M , using Theorem 1.7, we conclude the proof.

Remark 1.16. If M is biharmonic of 1-type, then we can prove, in a more geometric
manner, that ϕ is B3 (see [15]). Indeed, if φ is a 1-type Riemannian immersion of
eigenvalue 2m and |φ0| = 1/

√
2, then

φ = φ0 + φp, ∆φp = 2mφp.

As φp : M → Rn+1 is also a Riemannian immersion, from a result of T. Takahashi (see
[124]), we have that φp(M) is contained in the hypersphere Sn(1/

√
2) of Rn+1 (centered

at the origin). Moreover, φp, thought of as a map into Sn(1/
√

2), is minimal. From
here, φ(M) is contained in the hypersphere Sn

φ0
(1/
√

2) centered at φ0 and φ, thought
of as a map into Sn

φ0
(1/
√

2), is minimal. Since |φ0| = |φp| = 1/
√

2, we get that φ(M)
lies at the intersection between Sn

φ0
(1/
√

2) and the hyperplane 〈x − φ0, φ0〉 = 0, thus
φ(M) ⊂ Sn−1

φ0
(1/
√

2). Next, since the inclusion Sn−1
φ0

(1/
√

2) → Sn
φ0

(1/
√

2) is totally
geodesic, we have that φ, as a map into Sn−1

φ0
(1/
√

2), is minimal. This last minimal
map is the desired map ψ, where Sn−1

φ0
(1/
√

2) is identified with Sn−1(1/
√

2).

1.4 Biharmonic hypersurfaces in spheres

The first case to look at is that of CMC proper-biharmonic hypersurfaces in Sm+1.
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Theorem 1.17 ([21]). Let ϕ : Mm → Sm+1 be a CMC proper-biharmonic hypersurface.
Then

(i) |A|2 = m;

(ii) the scalar curvature s is constant and positive, s = m2(1 + |H|2)− 2m.

Proof. We obtain (i) as an immediate consequence of (1.5).
For (ii), from the Gauss equation we obtain

Ricci(X, Y ) = (m− 1)〈X,Y 〉+ 〈A(X), Y 〉 traceA− 〈A(X), A(Y )〉.

Since |A|2 = m, by considering the trace, we conclude.

Remark 1.18. In the minimal case the condition |A|2 = m is exhaustive. In fact a
minimal hypersurface in Sm+1 with |A|2 = m is a minimal standard product of spheres
(see [52, 87]). We point out that the full classification of CMC hypersurfaces in Sm+1

with |A|2 = m, therefore biharmonic, is not known.

As a direct consequence of [105, Theorem 2] we have the following result.

Theorem 1.19 ([16]). Let ϕ : Mm → Sm+1 be a CMC proper-biharmonic hypersurface.
Assume that M has non-negative sectional curvature. Then ϕ(M) is either an open part
of Sm(1/

√
2), or an open part of Sm1(1/

√
2)× Sm2(1/

√
2), m1 + m2 = m, m1 6= m2.

In the following we shall no longer assume that the biharmonic hypersurfaces have
constant mean curvature, and we shall split our study in three cases. In Case 1 we shall
study the proper-biharmonic hypersurfaces with respect to the number of their distinct
principal curvatures, in Case 2 we shall study them with respect to |A|2 and |H|2, and in
Case 3 the study will be done with respect to the sectional, Ricci and scalar curvatures
of the hypersurface.

1.4.1 Case 1

Obviously, if ϕ : Mm → Sm+1 is an umbilical proper-biharmonic hypersurface in Sm+1,
then ϕ(M) is an open part of Sm(1/

√
2).

When the hypersurface has at most two or exactly three distinct principal curvatures
everywhere we obtain the following rigidity results.

Theorem 1.20 ([21]). Let ϕ : Mm → Sm+1 be a hypersurface. Assume that ϕ is
proper-biharmonic with at most two distinct principal curvatures everywhere. Then ϕ
is CMC.

Proof. Suppose that ϕ is not CMC. Then, there exists an open subset U of M such that
f = |H| > 0, grad f 6= 0 at any point of U ; η = H/|H|. Note that U can not be made
out only of umbilical points (otherwise it would be CMC). We can then assume that
there exists a point q ∈ U which is not umbilical. Then, eventually by restricting U , we
can assume that A 6= f Id at every point of U , thus A has exactly two distinct principal
curvatures on U . Recall that, as A has exactly two distinct principal curvatures, the
multiplicities of its principal curvatures are constant and the principal curvatures are
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smooth (see [116] or [13]). Thus A is diagonalizable with respect to a local orthonormal
frame field {E1, . . . , Em}. We then have A(Ei) = k̄iEi, i = 1, . . . , m, where

k̄1(q) = · · · = k̄m1(q) = k1(q) , k̄m1+1(q) = · · · = k̄m(q) = k2(q),

and k1(q) 6= k2(q), for any q ∈ U . From (1.5) we can assume that

k1 = −m

2
f (1.21)

and E1 = grad f/| grad f | on U .
Since 〈Eα, E1〉 = 0, we have on U

Eα(f) = 0 , ∀α = 2, . . . , m. (1.22)

We shall use the connection equations with respect to the frame field {E1, . . . , Em},
∇EiEj = ωk

j (Ei)Ek. (1.23)

Let us first prove that the multiplicity of k1 is m1 = 1. Suppose that m1 ≥ 2. Then
there exists α ∈ {2, . . . ,m1}, such that k̄α = k1 on U . Since ∇⊥η = 0, the Codazzi
equation for A writes as

(∇EiA)(Ej) = (∇EjA)(Ei), ∀ i, j = 1, . . . , m. (1.24)

By using (1.23), the Codazzi equation becomes

Ei(k̄j)Ej +
m∑

`=1

(k̄j − k̄`)ω`
j(Ei)E` = Ej(k̄i)Ei +

m∑

`=1

(k̄i − k̄`)ω`
i (Ej)E`. (1.25)

Putting i = 1 and j = α in (1.25) and taking the scalar product with Eα we obtain
E1(k1) = 0, which, together with (1.21) and (1.22), gives f = constant, and this is a
contradiction.

Thus k̄1 = k1 and k̄α = k2, for all α = 2, . . . , m, and since traceA = mf , we get

k2 =
3
2

m

m− 1
f. (1.26)

Putting i = 1 and j = α in (1.25) and taking the scalar product with Eα, Eβ , β 6= α,
and E1, respectively, one gets

ωα
1 (Eα) = − 3

m + 2
E1(f)

f
, (1.27a)

ωα
1 (Eβ) = 0, (1.27b)

ωα
1 (E1) = 0, (1.27c)

for all α, β = 2, . . . , m, α 6= β.
We now express the Gauss equation for U in Sn,

〈RSn
(X, Y )Z, W 〉 = 〈R(X, Y )Z, W 〉

+〈B(X, Z), B(Y, W )〉 − 〈B(X, W ), B(Y, Z)〉, (1.28)
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with X = W = E1 and Y = Z = Eα. One obtains

B(E1, Eα) = 0, B(E1, E1) = k1η, 〈B(Eα, Eα), B(E1, E1)〉 = k1k2.

From (1.23), (1.27b), (1.27c), and using ωk
j = −ωj

k, the curvature term is

〈R(E1, Eα)Eα, E1〉 = −E1(ωα
1 (Eα))− (ωα

1 (Eα))2.

Finally, (1.28) and (1.27a) imply

fE1(E1(f)) =
m + 2

3
f2 − m2(m + 2)

4(m− 1)
f4 +

m + 5
m + 2

(E1(f))2. (1.29)

From (1.21) and (1.26), we have

|A|2 = k2
1 + (m− 1)k2

2 =
m2(m + 8)
4(m− 1)

f2. (1.30)

Moreover, using (1.22), (1.23) and (1.27a), the Laplacian of f becomes

∆f = −E1(E1(f))−
m∑

α=2

Eα(Eα(f)) + (∇E1E1)f +
m∑

α=2

(∇EαEα)f

= −E1(E1(f)) +
m∑

α=2

ω1
α(Eα)E1(f)

= −E1(E1(f)) +
3(m− 1)
m + 2

(E1(f))2

f
. (1.31)

From (1.5)(i), by substituting (1.30) and (1.31), we get

fE1(E1(f)) = −mf2 +
m2(m + 8)
4(m− 1)

f4 +
3(m− 1)
m + 2

(E1(f))2. (1.32)

Consider now γ = γ(u) to be an arbitrary integral curve of E1 in U . Along γ we
have f = f(u) and we set w = (E1(f))2 = (f ′)2. Then dw/df = 2f ′′, and (1.29) and
(1.32) become





1
2
f

dw

df
=

m + 2
3

f2 − m2(m + 2)
4(m− 1)

f4 +
m + 5
m + 2

w,

1
2
f

dw

df
= −mf2 +

m2(m + 8)
4(m− 1)

f4 +
3(m− 1)
m + 2

w.

(1.33)

By subtracting the two equations we find two cases.
If m = 4, then

−2(2m + 1)
3f2

f2 +
m2(m + 5)
2(m− 1)

f4 = 0,

thus f is constant.
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If m 6= 4, then

w =
(m + 2)(2m + 1)

3(m− 4)
f2 − m2(m + 2)(m + 5)

4(m− 4)(m− 1)
f4.

Differentiating with respect to f and replacing this in the second equation of (1.33), we
get

(m− 1)(m + 5)
3

f2 +
3m2(2m + 1)

4(m− 1)
f4 = 0.

Therefore f is constant along γ, thus grad f = 0 along γ and we have a contradiction.

Theorem 1.21 ([21]). Let ϕ : Mm → Sm+1 be a hypersurface. Assume that ϕ is
proper-biharmonic with at most two distinct principal curvatures everywhere. Then
ϕ(M) is either an open part of Sm(1/

√
2), or an open part of Sm1(1/

√
2)×Sm2(1/

√
2),

m1 + m2 = m, m1 6= m2. Moreover, if M is complete, then either ϕ(M) = Sm(1/
√

2)
and ϕ is an embedding, or ϕ(M) = Sm1(1/

√
2)× Sm2(1/

√
2), m1 + m2 = m, m1 6= m2

and ϕ is an embedding when m1 ≥ 2 and m2 ≥ 2.

Proof. By Theorem 1.20 and Theorem 1.7, the mean curvature of M in Sm+1 is constant,
|H| ∈ (0, 1]. Thus we have a globally defined unit section in the normal bundle η =
H/|H| and a globally defined mean curvature function f = |H|. By using Corollary 1.2,
we also obtain |A|2 = m.

We now have two situations.
(i) If there exists an umbilical point p0 ∈ M and we denote by k(p0) the principal

curvature with respect to η at p0, then

mk(p0) = m|H(p0)|,

and |A|2 = m implies
mk2(p0) = m.

These two relations lead to |H(p0)| = 1, but |H| is constant, thus |H| = 1 on M . From
Theorem 1.7 we conclude that ϕ(M) is an open part of Sm(1/

√
2).

(ii) If M has only non-umbilical points, we have the globally defined continuous
principal curvature functions k1 and k2 with multiplicity functions m1 and m2 with
respect to η = H/|H|, and k1(p) 6= k2(p), for all p ∈ M . As discussed at the beginning
of the proof of Theorem 1.20, m1 and m2 are constant on M . Since k1 and k2 are the
solutions of 




m1k1 + m2k2 = mf,

m1k
2
1 + m2k

2
2 = m,

(1.34)

where m1, m2 and f are constant, we conclude that M has two distinct constant
principal curvatures. Theorem 1 in [115] implies that ϕ(M) is an open part of the
product of two spheres Sm1(a)× Sm2(b), such that a2 + b2 = 1, m1 + m2 = m. Since M
is biharmonic in Sn, from Theorem 1.6, we get that a = b = 1/

√
2 and m1 6= m2.

The last statement of the theorem follows by a standard argument presented by
K. Nomizu and B. Smyth in [105].
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Corollary 1.22 ([30]). Let ϕ : M2 → S3 be a proper-biharmonic surface. Then ϕ(M)
is an open part of S2(1/

√
2) ⊂ S3.

Theorem 1.23 ([21]). Let ϕ : Mm → Sm+1, m ≥ 3, be a proper-biharmonic hypersur-
face. The following statements are equivalent:

(i) ϕ is quasi-umbilical,

(ii) ϕ is conformally flat,

(iii) ϕ(M) is an open part of Sm(1/
√

2) or of Sm−1(1/
√

2)× S1(1/
√

2).

Proof. By Theorem 1.21 we get that (i) is equivalent to (iii). Also, note that (iii)
obviously implies (ii).

In order to prove that (ii) implies (i), recall that, for m ≥ 4, by a well-known
result (see, for example, [45]), any conformally flat hypersurface of a space form is
quasi-umbilical and we conclude.

For m = 3, as the hypersurface is conformally flat, it follows that the (0, 2)-tensor
field L = −Ricci+

s

4
〈 , 〉, where s is the scalar curvature of M , is a Codazzi tensor field,

i.e.
(∇XL)(Y, Z) = (∇Y L)(X,Z), ∀X, Y, Z ∈ C(TM). (1.35)

Using the notations from the proof of Theorem 1.20, the Gauss equation implies

Ricci(X,Y ) = 2〈X, Y 〉+ 3f〈A(X), Y 〉 − 〈A(X), A(Y )〉

and
s = 6 + 9f2 − |A|2. (1.36)

We use the same techniques as in the proof of Theorem 1.20. Suppose the existence
of an open subset U of M with 3 distinct principal curvatures.

If f is constant on U , using the above expressions, we conclude that U is flat and that
the product of any of its two principal curvatures is −1, thus we get to a contradiction.

Assume that f is not constant on U . We can suppose that gradp f 6= 0, ∀p ∈ U .

Consider E1 =
grad f

| grad f | . As M is proper biharmonic, E1 gives a principal direction

with principal curvature k1 = −3
2
f . From k1 + k2 + k3 = 3f , we can write k2 =

9
4
f + ε

and k3 =
9
4
f − ε, ε ∈ C∞(U). Using the Codazzi and Gauss equations and equations

(1.35) and (1.36) we show that f = aε5, a ∈ R, and combining all these relations we
obtain that ε is a solution of a polynomial equation with constant coefficients. Thus ε
and f are constant.

Hence M has at most two distinct principal curvatures and this completes the proof.

It is well known that, if m ≥ 4, a hypersurface ϕ : Mm → Sm+1 is quasi-umbilical
if and only if it is conformally flat. From Theorem 1.23 we see that under the bihar-
monicity hypothesis the equivalence remains true when m = 3.
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We recall that an orientable hypersurface ϕ : Mm → Sm+1 is said to be isoparametric
if it has constant principal curvatures or, equivalently, the number ` of distinct principal
curvatures k1 > k2 > · · · > k` is constant on M and the ki’s are constant. The distinct
principal curvatures have constant multiplicities m1, . . . , m`, m = m1 + m2 + . . . + m`.

The isoparametric hypersurfaces with ` ≤ 3 were studied by E. Cartan (see [36])
and P.J. Ryan (see [116]). We present here a general result.

Theorem 1.24 ([36, 116]). Let ϕ : M → Sm+1 be an m-dimensional isoparametric
hypersurface in Sm+1. Let k1 > k2 > . . . > k` be the distinct principal curvatures with
multiplicities m1, . . . , m`, m = m1 + m2 + . . . + m`. Then

(i) ` is either 1, 2, 3, 4 or 6.

(ii) If ` = 1, then M is totally umbilical.

(iii) If ` = 2, then ϕ(M) is an open part of Sm1(r1)× Sm2(r2), r2
1 + r2

2 = 1.

(iv) If ` = 3, then m1 = m2 = m3 = 2q, q = 0, . . . , 3.

(v) If ` = 4, m1 = m3 and m2 = m4. Moreover, (m1,m2) = (2, 2) or (4, 5), or
m1 + m2 + 1 is a multiple of 2ζ(m∗−1). Here ζ(n) is the number of integers a with
1 < a < n, a ≡ 0, 1, 2, 4 mod 8 and m∗ = min{m1, m2}.

(vi) If ` = 6, m1 = m2 = . . . = m6 = 1 or 2.

(vii) There exists an angle θ, 0 < θ < π
` , such that

kα = cot
(
θ + (α− 1)π/`

)
, α = 1, . . . , `.

The next result on hypersurfaces with 3 distinct principal curvatures was proved.

Theorem 1.25 ([37]). A compact hypersurface Mm of constant scalar curvature s and
constant mean curvature |H| in Sm+1 is isoparametric provided it has 3 distinct principal
curvatures everywhere.

In order to analyze the case of S4, we shall need the following.

Theorem 1.26 ([51]). Any complete hypersurface with constant scalar and mean cur-
vature in S4 is isoparametric.

For what concerns biharmonic hypersurfaces with 3 distinct principal curvatures in
spheres, the following non-existence result was proved.

Theorem 1.27 ([19]). There exist no compact CMC proper-biharmonic hypersurfaces
ϕ : Mm → Sm+1 with three distinct principal curvatures everywhere.

Proof. From the hypothesis it follows that M has constant scalar curvature. Since M
has three distinct principal curvatures, we can apply Theorem 1.25 and we get that M
is isoparametric with ` = 3 in Sm+1.
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We now use (vii) in Theorem 1.24 in order to express the principal curvatures of M .
There exists θ ∈ (0, π/3) such that

k1 = cot θ, k2 = cot
(
θ +

π

3
)

=
k1 −

√
3

1 +
√

3k1

, k3 = cot
(
θ +

2π

3
)

=
k1 +

√
3

1−√3k1

.

Thus,

|A|2 = 2q(k2
1 + k2

2 + k2
3) = 2q 9k6

1 + 45k2
1 + 6

(1− 3k2
1)2

. (1.37)

Moreover, from (iv) in Theorem 1.24 we obtain m = 3 · 2q, q = 0, . . . , 3 and since
M is biharmonic of constant mean curvature, from (1.5), we get |A|2 = m = 3 · 2q.

The last equation together with (1.37) implies that k2
1 is a solution of

P (t) = 3t3 − 9t2 + 21t + 1 = 0, which is an equation with no positive roots. In-
deed, P (0) = 1 > 0 and P ′(t) = 9t2 − 18t + 21 > 0, for all t ∈ R, hence P is an
increasing function on R.

Then, in [77, 78], T. Ichiyama, J.I. Inoguchi and H. Urakawa classified all proper-
biharmonic isoparametric hypersurfaces in spheres.

Theorem 1.28 ([77, 78]). Let ϕ : Mm → Sm+1 be an orientable isoparametric hyper-
surface. If ϕ is proper-biharmonic, then ϕ(M) is either an open part of Sm(1/

√
2), or

an open part of Sm1(1/
√

2)× Sm2(1/
√

2), m1 + m2 = m, m1 6= m2.

The biharmonic hypersurfaces in S4 were studied in [19].

Theorem 1.29 ([19]). Let ϕ : M3 → S4 be a proper-biharmonic hypersurface. Then ϕ
is CMC.

Proof. Suppose that |H| is not constant on M . Then there exists an open subset U
of M such that gradp |H|2 6= 0, for all p ∈ U . By eventually restraining U we can
suppose that |H| > 0 on U , and thus gradp |H| 6= 0, for all p ∈ U . If U has at most two
distinct principal curvatures, then , by Theorem 4.1 in [21], we conclude that its mean
curvature is constant and we have a contradiction. Then there exists a point in U with
three distinct principal curvatures. This implies the existence of an open neighborhood
of points with three distinct principal curvatures and we can suppose, by restraining
U , that all its points have three distinct principal curvatures. On U we can consider
the unit section in the normal bundle η = H/|H| and denote by f = |H| the mean
curvature function of U in Sm+1(c) and by ki, i = 1, 2, 3, its principal curvatures w.r.t.
η.

Conclusively, the hypothesis for M to be proper-biharmonic with at most three
distinct principal curvatures in Sm+1(c) and non-constant mean curvature, implies the
existence of an open connected subset U of M , with





gradp f 6= 0,

f(p) > 0,

k1(p) 6= k2(p) 6= k3(p) 6= k1(p), ∀p ∈ U.

(1.38)
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We shall contradict the condition gradp f 6= 0, for all p ∈ U .
Since M is proper-biharmonic in S4(c), from (1.5) we have





∆f = (3c− |A|2)f,

A(grad f) = −3
2
f grad f.

(1.39)

We can consider k1 = −3
2f and X1 =

grad f

| grad f | on U . Then X1 is a principal direction

corresponding to the principal curvature k1. Recall that 3f = k1 + k2 + k3, thus

k2 + k3 =
9
2
f. (1.40)

We shall use the moving frames method and denote by X1, X2, X3 the orthonormal
frame field of principal directions and by {ωa}3

a=1 the dual frame field of {Xa}3
a=1 on

U .
Obviously,

Xi(f) = 〈Xi, grad f〉 = | grad f |〈Xi, X1〉 = 0, i = 2, 3, (1.41)

thus
grad f = X1(f)X1. (1.42)

We write
∇Xa = ωb

aXb, ωb
a ∈ C(T ∗U).

From the Codazzi equations for M , for distinct a, b, d = 1, 2, 3, we get

Xa(kb) = (ka − kb)ωb
a(Xb) (1.43)

and

(kb − kd)ωd
b (Xa) = (ka − kd)ωd

a(Xb). (1.44)

Consider now in (1.43), a = 1 and b = i and, respectively, a = i and b = j with
i 6= j. We obtain

ω1
i (Xi) =

X1(ki)
ki − k1

and

ωi
j(Xj) =

Xi(kj)
kj − ki

.

For a = i and b = 1, as Xi(k1) = 0, (1.43) leads to ω1
i (X1) = 0 and we can write

ω1
a(X1) = 0, a = 1, 2, 3.

Notice that, since Xi(f) = 0, then 〈[Xi, Xj ], X1〉 = 0, thus ωj
1(Xi) = ωi

1(Xj). Now,
from (1.44), for a = 1, b = i and d = j, with i 6= j, we get

ω1
2(X3) = ω2

3(X1) = ω3
1(X2) = 0.
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The structure 1-forms are thus determined by the following set of relations





ω1
2(X1) = 0, ω1

2(X2) = X1(k2)

k2+ 3
2
f

= α2, ω1
2(X3) = 0,

ω1
3(X1) = 0, ω1

3(X2) = 0, ω1
3(X3) = X1(k3)

k3+ 3
2
f

= α3,

ω2
3(X1) = 0, ω2

3(X2) = X3(k2)
k3−k2

= β2, ω2
3(X3) = X2(k3)

k3−k2
= β3,

(1.45)

In order to express the first condition in (1.39), by using (1.40), we compute

|A|2 = k2
1 + k2

2 + k2
3

= k2
1 + (k2 + k3)2 − 2k2k3 (1.46)

=
45
2

f2 − 2K,

where K denotes the product k2k3. From (1.42) we deduce that

∆f = −div(grad f) = −div(X1(f)X1) = −X1(X1(f))−X1(f) div X1

= −X1(X1(f)) + X1(f)(ω1
2(X2) + ω1

3(X3))
= −X1(X1(f)) + X1(f)(α2 + α3). (1.47)

Now, by using (1.46) and (1.47), the equation ∆f = (3c− |A|2)f becomes

X1(X1(f))−X1(f)(α2 + α3) + (2K + 3c− 45
2

f2)f = 0. (1.48)

We also compute

[X1, Xi] = ∇X1Xi −∇XiX1 = 〈∇X1Xi, X1〉X1 − 〈∇XiX1, Xi〉Xi

= ω1
i (Xi)Xi = αiXi. (1.49)

We shall now use the Gauss equation

〈RS4(X,Y )Z,W 〉 = 〈R(X,Y )Z,W 〉
+〈B(X, Z), B(Y,W )〉 − 〈B(X, W ), B(Y,Z)〉. (1.50)

From (1.50) we have:

• for X = W = X1 and Y = Z = Xi





X1(α2) = α2
2 + c− 3

2fk2,

X1(α3) = α2
3 + c− 3

2fk3;
(1.51)

• for X = W = X2 and Y = Z = X3

K + c = X2(β3)−X3(β2)− α2α3 − β2
2 − β2

3 ; (1.52)
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• for Y = W = X3, X = X2 and Z = X1 and, respectively, for X = W = X2,
Y = X3 and Z = X1 




X2(α3) = β3(α3 − α2),

X3(α2) = β2(α3 − α2);
(1.53)

• for X = W = X2, Y = X1 and Z = X3, and, respectively, for X = W = X3,
Y = X2 and Z = X1 




X1(β2) = α2β2,

X1(β3) = α3β3.
(1.54)

Notice now that, from (1.41) and (1.49),

Xi(X1(f)) = −[X1, Xi]f + X1(Xi(f)) = −αiXi(f) + X1(Xi(f)) = 0 (1.55)

and
Xi(X1(X1(f))) = 0. (1.56)

Also, since K =
(k2 + k3)2 − (k3 − k2)2

4
we obtain





X2(K) = −(k3 − k2)2β3,

X3(K) = (k3 − k2)2β2.
(1.57)

We differentiate (1.48) along X2 and X3 and use (1.53), (1.55), (1.56) and (1.57). We
get 




X2(α2) = −β3(α3 − α2)− 2f

X1(f)
(k3 − k2)2β3,

X3(α3) = −β2(α3 − α2) +
2f

X1(f)
(k3 − k2)2β2.

(1.58)

We intend to prove that Xi(kj) = 0, i, j = 2, 3. In order to do this we apply
[X1, X2] = α2X2 to the quantity α2. On one hand, from (1.58), we get

[X1, X2]α2 = α2X2(α2) = β3

{
− α2α3 + α2

2 −
2f

X1(f)
(k3 − k2)2α2

}
. (1.59)

On the other hand, by using (1.51) and (1.58), we obtain

[X1, X2]α2 = X1(X2(α2))−X2(X1(α2))

= β3

{
− 2α2

3 − α2
2 + 3α2α3 +

2f

X1(f)
[− 2(k3 − k2)X1(k3 − k2)

+(k3 − k2)2(2α2 − α3)
]− 2X1

( f

X1(f)

)
(k3 − k2)2

}
. (1.60)

By putting together (1.59) and (1.60) we either have β3 = 0 or

X1

( f

X1(f)

)
= −(α3 − α2)2

(k3 − k2)2
+

f

X1(f)

(
3α2 − α3 − 2

X1(k3 − k2)
k3 − k2

)
. (1.61)
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Moreover,

X2

(X1(k3 − k2)
k3 − k2

)
= − 1

k3 − k2
[X1, X2](k3 − k2) + X1

(X2(k3 − k2)
k3 − k2

)

= 2(α3 − α2)β3.

Suppose that β3 6= 0, differentiate (1.61) along X2 and use (1.53) and (1.58). We get

2(α3 − α2) = − f

X1(f)
(k3 − k2)2. (1.62)

We differentiate now (1.62) along X2 and obtain

α3 − α2 = −2
f

X1(f)
(k3 − k2)2, (1.63)

and since k2 6= k3 the equations (1.62) and (1.63) lead to a contradiction.
Analogously, by using the symmetry of the equations in X2 and X3, we immediately

prove that β2 = 0.
We rewrite equations (1.51) in the form




X1(X1(k2)) = 21
2 α2X1(f) + 2(K + c)(k3 + 3

2f) + (c− 3
2fk2)(k2 + 3

2f),

X1(X1(k3)) = 21
2 α3X1(f) + 2(K + c)(k2 + 3

2f) + (c− 3
2fk3)(k3 + 3

2f),
(1.64)

and by summing up we obtain

X1(X1(f)) =
7
3
X1(f)(α2 + α3) + f(4K + 5c− 9f2). (1.65)

Now, by using (1.48) and (1.65) we obtain

X1(f)(α2 + α3) = f
(− 9

2
K − 6c +

189
8

f2
)
. (1.66)

We replace (1.66) in (1.65) and get

X1(X1(f)) = f
(− 13

2
K − 9c +

369
8

f2
)
. (1.67)

In order to get another relation on f and K we first use (1.52), (1.51), (1.40), (1.45)
and determine

X1(K) = −X1(α2α3) (1.68)

= −(α2α3 + c)(α2 + α3) +
3
2
f(α2k3 + α3k2)

= (K + 9f2)(α2 + α3)− 27
4

fX1(f).

By differentiating (1.66) along X1, and by using (1.68), (1.67), (1.51), (1.66) we get

X1(f)
(13

2
K + 10c− 108f2

)
= f(α2 + α3)

(13
2

K + 15c− 441
4

f2
)
. (1.69)
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We multiply (1.69) first by X1(f) and secondly by α2 + α3 and, by using (1.66), we get




(X1(f))2( 13
2 K + 10c− 108f2) = f2(− 9

2K − 6c + 189
8 f2)( 13

2 K + 15c− 441
4 f2),

( 13
2 K + 10c− 108f2)(− 9

2K − 6c + 189
8 f2) = (α2 + α3)2(13

2 K + 15c− 441
4 f2).

(1.70)

Differentiating (1.66) along X1, and using (1.68), (1.67), (1.51), (1.66), (1.70), we
obtain

27f2(4044800c3 − 49579440c2f2 + 187840944cf4 − 254205945f6)

−6(51200c3 − 19600320c2f2 + 119328660cf4 − 80969301f6)K (1.71)

−208(2240c2 − 108396cf2 − 285363f4)K2

+2704(16c− 2277f2)K3

+140608K4 = 0.

Consider now γ = γ(t), t ∈ I, to be an integral curve of X1 passing through
p = γ(t0). Since X2(f) = X3(f) = 0 and X2(K) = X3(K) = 0 and X1(f) 6= 0, we can
write t = t(f) in a neighborhood of f0 = f(t0) and thus consider K = K(f).

Notice that if 13
2 K + 15c − 441

4 f2 = 0 or 10c + 13
2 K − 108f2 = 0, then from (1.71)

the function f results to be the solution of a polynomial equation of eighth degree with
constant coefficients and we would get to a contradiction. Thus, from (1.70) we have
that 




(df

dt

)2 =
f2(−9

2K − 6c + 189
8 f2)(13

2 K + 15c− 441
4 f2)

13
2 K + 10c− 108f2

,

(α2 + α3)2 = ( 13
2

K+10c−108f2)(− 9
2
K−6c+ 189

8
f2)

13
2

K+15c− 441
4

f2 .

(1.72)

We can now compute dK
df by using (1.72), (1.68) and (1.66),

dK

df
=

dK

dt

dt

df

=
(K + 9f2)df

dt (α2 + α3)

(df
dt )

2
− 27

4
f

=
(K + 9f2)(13

2 K + 10c− 108f2)
f(13

2 K + 15c− 441
4 f2)

− 27
4

f. (1.73)

The next step consists in differentiating (1.71) with respect to f . By substituting
dK

df
from (1.73) we get another polynomial equation in f and K, of fifth degree in

K. We eliminate K5 between this new polynomial equation and (1.71). The result
constitutes a polynomial equation in f and K, of fourth degree in K. In a similar way,
by using (1.71) and its consequences we are able to gradually eliminate K4, K3, K2

and K and we are led to a polynomial equation with constant coefficients in f . Thus f
results to be constant and we conclude.
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Theorem 1.30. Let ϕ : M3 → S4 be a complete proper-biharmonic hypersurface. Then
ϕ(M) = S3(1/

√
2) or ϕ(M) = S2(1/

√
2)× S1(1/

√
2).

Proof. Suppose that M3 is a compact proper-biharmonic hypersurface of S4. From
Theorem 1.29 follows that M has constant mean curvature and, since it satisfies the
hypotheses of Theorem 1.17, we conclude that it also has constant scalar curvature. We
can thus apply Theorem 1.26 and it results that M is isoparametric in S4. From Theo-
rem 1.27 we get that M cannot be isoparametric with ` = 3, and by using Theorem 1.21
we conclude the proof.

An orientable hypersurface ϕ : Mm → Sm+1 is said to be a proper Dupin hypersur-
face if the number ` of distinct principal curvatures is constant on M and each principal
curvature function is constant along its corresponding principal directions.

Theorem 1.31 ([16]). Let ϕ : Mm → Sm+1 be an orientable proper Dupin hypersurface.
If ϕ is proper-biharmonic, then ϕ is CMC.

Proof. As M is orientable, we fix η ∈ C(NM) and denote A = Aη and f = (traceA)/m.
Suppose that f is not constant. Then there exists an open subset U ⊂ M such that

grad f 6= 0 at every point of U . Since ϕ is proper-biharmonic, from (1.5) we get that
−mf/2 is a principal curvature with principal direction grad f . Since the hypersurface
is proper Dupin, by definition, grad f(f) = 0, i.e. grad f = 0 on U , and we come to a
contradiction.

Corollary 1.32 ([16]). Let ϕ : Mm → Sm+1 be an orientable proper Dupin hypersurface
with ` ≤ 3. If ϕ is proper-biharmonic, then ϕ(M) is either an open part of Sm(1/

√
2),

or an open part of Sm1(1/
√

2)× Sm2(1/
√

2), m1 + m2 = m, m1 6= m2.

Proof. Taking into account Theorem 1.21, we only have to prove that there exist no
proper-biharmonic proper Dupin hypersurfaces with ` = 3. Indeed, by Theorem 1.31,
we conclude that ϕ is CMC. By a result in [17], ϕ is of type 1 or of type 2, in the
sense of B.-Y. Chen. If ϕ is of type 1, we must have ` = 1 and we get a contradiction.
If ϕ is of type 2, since ϕ is proper Dupin with ` = 3, from Theorem 9.11 in [42], we
get that ϕ is isoparametric. But, from Theorem 1.28, proper-biharmonic isoparametric
hypersurfaces must have ` ≤ 2.

1.4.2 Case 2

The simplest result is the following.

Proposition 1.33 ([16]). Let ϕ : Mm → Sm+1 be a compact hypersurface. Assume that
ϕ is proper-biharmonic with nowhere zero mean curvature vector field and |A|2 ≤ m, or
|A|2 ≥ m. Then ϕ is CMC and |A|2 = m.

Proof. As H is nowhere zero, we can consider η = H/|H| a global unit section in the
normal bundle NM of M in Sm+1. Then, on M ,

∆f = (m− |A|2)f,

where f = (traceA)/m = |H|. Now, as m − |A|2 does not change sign, from the
maximum principle we get f = constant and |A|2 = m.
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In fact, Proposition 1.33 holds without the hypothesis “H nowhere zero”. In order
to prove this we shall consider the cases |A|2 ≥ m and |A|2 ≤ m, separately.

Proposition 1.34 ([16]). Let ϕ : Mm → Sm+1 be a compact hypersurface. Assume
that ϕ is proper-biharmonic and |A|2 ≥ m. Then ϕ is CMC and |A|2 = m.

Proof. Locally,
∆f = (m− |A|2)f,

where f = (traceA)/m, f2 = |H|2, and therefore

1
2
∆f2 = (m− |A|2)f2 − | grad f |2 ≤ 0.

As f2, |A|2 and | grad f |2 are well defined on the whole M , the formula holds on M .
From the maximum principle we get that |H| is constant and |A|2 = m.

The case |A|2 ≤ m was solved by J.H. Chen in [48]. Here we include the proof for
two reasons. First, the original one is in Chinese and second, the formalism used by
J.H. Chen was local, while ours is globally invariant. Moreover, the proof we present is
slightly shorter.

Theorem 1.35 ([48]). Let ϕ : Mm → Sm+1 be a compact hypersurface in Sm+1. If ϕ
is proper-biharmonic and |A|2 ≤ m, then ϕ is CMC and |A|2 = m.

Proof. We may assume that M is orientable, since, otherwise, we consider the double
covering M̃ of M . This is compact, connected and orientable, and in the given hypothe-
ses ϕ̃ : M̃ → Sm+1 is proper-biharmonic and |Ã|2 ≤ m. Moreover, ϕ̃(M̃) = ϕ(M).

As M is orientable, we fix a unit global section η ∈ C(NM) and denote A = Aη

and f = (traceA)/m. In the following we shall prove that

1
2
∆

(
| grad f |2 +

m2

8
f4 + f2

)
+

1
2

div(|A|2 grad f2) ≤

≤ 8(m− 1)
m(m + 8)

(|A|2 −m)|A|2f2, (1.74)

on M, and this will lead to the conclusion.
From (1.5)(i) one easily gets

1
2
∆f2 = (m− |A|2)f2 − | grad f |2 (1.75)

and
1
4
∆f4 = (m− |A|2)f4 − 3f2| grad f |2. (1.76)

From the Weitzenböck formula we have

1
2
∆| grad f |2 = −〈trace∇2 grad f, grad f〉 − |∇ grad f |2, (1.77)

and, since
trace∇2 grad f = − grad(∆f) + Ricci(grad f),
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we obtain
1
2
∆| grad f |2 = 〈grad∆f, grad f〉 − Ricci(grad f, grad f)− |∇ grad f |2. (1.78)

Equations (1.5)(i) and (1.75) imply

〈grad∆f, grad f〉 = (m− |A|2)| grad f |2 − 1
2
〈grad |A|2, grad f2〉

= (m− |A|2)| grad f |2 − 1
2

(
div(|A|2 grad f2) + |A|2∆f2

)

= m| grad f |2 − 1
2

div(|A|2 grad f2)− |A|2(m− |A|2)f2. (1.79)

From the Gauss equation of M in Sm+1 we obtain

Ricci(X, Y ) = (m− 1)〈X,Y 〉+ 〈A(X), Y 〉 traceA− 〈A(X), A(Y )〉, (1.80)

for all X,Y ∈ C(TM), therefore, by using (1.5)(ii),

Ricci(grad f, grad f) =
(

m− 1− 3m2

4
f2

)
| grad f |2. (1.81)

Now, by substituting (1.79) and (1.81) in (1.78) and using (1.75) and (1.76), one
obtains

1
2
∆| grad f |2 =

(
1 +

3m2

4
f2

)
| grad f |2 − 1

2
div(|A|2 grad f2)

−|A|2(m− |A|2)f2 − |∇ grad f |2

= −1
2
∆f2 − m2

16
∆f4 − (m− |A|2)

(
|A|2 − m2

4
f2 − 1

)
f2

−1
2

div(|A|2 grad f2)− |∇ grad f |2.
Hence

−1
2∆

(
| grad f |2 + m2

8 f4 + f2
)
− 1

2 div(|A|2 grad f2) =

= (m− |A|2)
(
|A|2 − m2

4 f2 − 1
)

f2 + |∇ grad f |2. (1.82)

We shall now verify that

(m− |A|2)
(
|A|2 − m2

4
f2 − 1

)
≥ (m− |A|2)

(
9

m + 8
|A|2 − 1

)
, (1.83)

at every point of M . Let us now fix a point p ∈ M . We have two cases.
Case 1. If gradp f 6= 0, then e1 = (gradp f)/| gradp f | is a principal direction for A with
principal curvature λ1 = −mf(p)/2. By considering ek ∈ TpM , k = 2, . . . , m, such that
{ei}m

i=1 is an orthonormal basis in TpM and A(ek) = λkek, we get at p

|A|2 =
m∑

i=1

|A(ei)|2 = |A(e1)|2 +
m∑

k=2

|A(ek)|2 =
m2

4
f2 +

m∑

k=2

λ2
k

≥ m2

4
f2 +

1
m− 1

(
m∑

k=2

λk

)2

=
m2(m + 8)
4(m− 1)

f2, (1.84)
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thus inequality (1.83) holds at p.
Case 2. If gradp f = 0, then either there exists an open set U ⊂ M , p ∈ U , such that
grad f/U = 0, or p is a limit point for the set V = {q ∈ M : gradq f 6= 0}.
In the first situation, we get that f is constant on U , and from a unique continuation
result for biharmonic maps (see [108]), this constant must be different from zero. Equa-
tion (1.5)(i) implies |A|2 = m on U , and therefore inequality (1.83) holds at p.
In the second situation, by taking into account Case 1 and passing to the limit, we
conclude that inequality (1.83) holds at p.

In order to evaluate the term |∇ grad f |2 of equation (1.82), let us consider a local
orthonormal frame field {Ei}m

i=1 on M . Then, also using (1.5)(i),

|∇ grad f |2 =
m∑

i,j=1

〈∇Ei grad f, Ej〉2 ≥
m∑

i=1

〈∇Ei grad f, Ei〉2

≥ 1
m

(
m∑

i=1

〈∇Ei grad f,Ei〉
)2

=
1
m

(∆f)2

=
1
m

(m− |A|2)2f2. (1.85)

In fact, (1.85) is a global formula.
Now, using (1.83) and (1.85) in (1.82), we obtain (1.74), and by integrating it, since

|A|2 ≤ m, we get
(|A|2 −m)|A|2f2 = 0 (1.86)

on M . Suppose that there exists p ∈ M such that |A(p)|2 6= m. Then there exists an
open set U ⊂ M , p ∈ U , such that |A|2/U 6= m. Equation (1.86) implies that |A|2f2

/U = 0.
Now, if there were a q ∈ U such that f(q) 6= 0, then A(q) would be zero and, therefore,
f(q) = 0. Thus f/U = 0 and, since M is proper-biharmonic, this is a contradiction.
Thus |A|2 = m on M and ∆f = 0, i.e. f is constant and we conclude.

Remark 1.36. It is worth pointing out that the statement of Theorem 1.35 is similar
in the minimal case: if ϕ : Mm → Sm+1 is a minimal hypersurface with |A|2 ≤ m,
then either |A| = 0 or |A|2 = m (see [121]). Apparently, by way of contrast, an
analog of Proposition 1.34 is not true in the minimal case. In fact, it was proved
in [114] that if a minimal hypersurface ϕ : M3 → S4 has |A|2 > 3, then |A|2 ≥ 6.
But, if the compact minimal hypersurface of Sm+1 with |A|2 ≥ m has at most two
distinct principal curvatures, then |A|2 = m (see [74]); and we believe that any proper-
biharmonic hypersurface in Sm+1 has at most two principal curvatures everywhere.

Obviously, from Proposition 1.34 and Theorem 1.35 we get the following result.

Proposition 1.37 ([16]). Let ϕ : Mm → Sm+1 be a compact hypersurface. If ϕ is
proper-biharmonic and |A|2 is constant, then ϕ is CMC and |A|2 = m.

The next result is a direct consequence of Proposition 1.34.

Proposition 1.38 ([16]). Let ϕ : Mm → Sm+1 be a compact hypersurface. If ϕ is
proper-biharmonic and |H|2 ≥ 4(m− 1)/(m(m + 8)), then ϕ is CMC. Moreover,
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(i) if m ∈ {2, 3}, then ϕ(M) is a small hypersphere Sm(1/
√

2);

(ii) if m = 4, then ϕ(M) is a small hypersphere S4(1/
√

2) or a standard product of
spheres S3(1/

√
2)× S1(1/

√
2).

Proof. Taking into account (1.84), the hypotheses imply |A|2 ≥ m.

For the non-compact case we obtain the following.

Proposition 1.39 ([16]). Let ϕ : Mm → Sm+1, m > 2, be a non-compact hyper-
surface. Assume that M is complete and has non-negative Ricci curvature. If ϕ is
proper-biharmonic, |A|2 is constant and |A|2 ≥ m, then ϕ is CMC and |A|2 = m. In
this case |H|2 ≤ ((m− 2)/m)2.

Proof. We may assume that M is orientable (otherwise, we consider the double covering
M̃ of M , which is non-compact, connected, complete, orientable, proper-biharmonic and
with non-negative Ricci curvature; the final result will remain unchanged). We consider
η to be a global unit section in the normal bundle NM of M in Sm+1. Then, on M , we
have

∆f = (m− |A|2)f, (1.87)

where f = (traceA)/m, and

1
2
∆f2 = (m− |A|2)f2 − | grad f |2 ≤ 0. (1.88)

On the other hand, as f2 = |H|2 ≤ |A|2/m is bounded, by the Omori-Yau Maximum
Principle (see, for example, [136]), there exists a sequence of points {pk}k∈N ⊂ M such
that

∆f2(pk) > −1
k

and lim
k→∞

f2(pk) = sup
M

f2.

It follows that lim
k→∞

∆f2(pk) = 0, so lim
k→∞

((m− |A|2)f2(pk)) = 0.

As lim
k→∞

f2(pk) = sup
M

f2 > 0, we get |A|2 = m. But from (1.87) follows that f is a

harmonic function on M . As f is also a bounded function on M , by a result of Yau
(see [136]), we deduce that f = constant.

Corollary 1.40 ([16]). Let ϕ : Mm → Sm+1 be a non-compact hypersurface. Assume
that M is complete and has non-negative Ricci curvature. If ϕ is proper-biharmonic,
|A|2 is constant and |H|2 ≥ 4(m− 1)/(m(m + 8)), then ϕ is CMC and |A|2 = m. In
this case, m ≥ 4 and |H|2 ≤ ((m− 2)/m)2.

Proposition 1.41 ([16]). Let ϕ : Mm → Sm+1 be a non-compact hypersurface. Assume
that M is complete and has non-negative Ricci curvature. If ϕ is proper-biharmonic,
|A|2 is constant, |A|2 ≤ m and H is nowhere zero, then ϕ is CMC and |A|2 = m.

Proof. As H is nowhere zero we consider η = H/|H| a global unit section in the normal
bundle. Then, on M ,

∆f = (m− |A|2)f, (1.89)

where f = |H| > 0. As m−|A|2 ≥ 0 by a classical result (see, for example, [89, pag. 2])
we conclude that m = |A|2 and therefore f is constant.
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1.4.3 Case 3

We first present another result of J.H. Chen in [48]. In order to do that, we shall need
the following lemma.

Lemma 1.42. Let ϕ : Mm → Sm+1 be an orientable hypersurface, η a unit section in
the normal bundle, and put Aη = A. Then

(i) (∇A)(·, ·) is symmetric,

(ii) 〈(∇A)(·, ·), ·〉 is totally symmetric,

(iii) trace(∇A)(·, ·) = m grad f .

Theorem 1.43 ([48]). Let ϕ : Mm → Sm+1 be a compact hypersurface. If ϕ is proper-
biharmonic, M has non-negative sectional curvature and m ≤ 10, then ϕ is CMC and
ϕ(M) is either Sm(1/

√
2), or Sm1(1/

√
2)× Sm2(1/

√
2), m1 + m2 = m, m1 6= m2.

Proof. For the same reasons as in Theorem 1.35 we include a detailed proof of this
result. We can assume that M is orientable (otherwise, as in the proof of Theorem 1.35,
we work with the oriented double covering of M). Fix a unit section η ∈ C(NM) and
put A = Aη and f = (traceA)/m.

We intend to prove that the following inequality holds on M ,

1
2
∆

(
|A|2 +

m2

2
f2

)
≤ 3m2(m− 10)

4(m− 1)
| grad f |2 − 1

2

m∑

i,j=1

(λi − λj)2Rijij . (1.90)

From the Weitzenböck formula we have
1
2
∆|A|2 = 〈∆A,A〉 − |∇A|2. (1.91)

Let us first verify that

trace(∇2A)(X, ·, ·) = ∇X(trace∇A), (1.92)

for all X ∈ C(TM). Fix p ∈ M and let {Ei}n
i=1 be a local orthonormal frame field,

geodesic at p. Then, also using Lemma 1.42(i), we get at p,

trace(∇2A)(X, ·, ·) =
m∑

i=1

(∇2A)(X, Ei, Ei) =
m∑

i=1

(∇X∇A)(Ei, Ei)

=
m∑

i=1

{∇X∇A(Ei, Ei)− 2∇A(∇XEi, Ei)} =
m∑

i=1

∇X∇A(Ei, Ei)

= ∇X(trace∇A).

Using Lemma 1.42, the Ricci commutation formula (see, for example, [25]) and (1.92),
we obtain

∆A(X) = −(trace∇2A)(X) = − trace(∇2A)(·, ·, X) = − trace(∇2A)(·, X, ·)
= − trace(∇2A)(X, ·, ·)− trace(RA)(·, X, ·)
= −∇X(trace∇A)− trace(RA)(·, X, ·)
= −m∇X grad f − trace(RA)(·, X, ·), (1.93)
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where

RA(X, Y, Z) = R(X,Y )A(Z)−A(R(X,Y )Z), ∀X, Y, Z ∈ C(TM).

Also, using (1.5)(ii) and Lemma 1.42, we obtain

trace〈A(∇· grad f), ·〉 = trace〈∇·A(grad f)− (∇A)(·, grad f), ·〉
= −m

4
trace〈∇· grad f2, ·〉 − 〈trace(∇A), grad f〉

=
m

4
∆f2 −m| grad f |2. (1.94)

Using (1.93) and (1.94), we get

〈∆A,A〉 = trace〈∆A(·), A(·)〉
= −m trace〈∇· grad f, A(·)〉+ 〈T, A〉
= −m trace〈A(∇· grad f), ·〉+ 〈T,A〉
= m2| grad f |2 − m2

4
∆f2 + 〈T, A〉, (1.95)

where T (X) = − trace(RA)(·, X, ·), X ∈ C(TM).
In the following we shall verify that

|∇A|2 ≥ m2(m + 26)
4(m− 1)

| grad f |2, (1.96)

at every point of M . Now, let us fix a point p ∈ M .
If gradp f = 0, then (1.96) obviously holds at p.
If gradp f 6= 0, then on a neighborhood U ⊂ M of p we can consider an orthonormal

frame field E1 = (grad f)/| grad f |, E2,. . . , Em, where Ek(f) = 0, for all k = 2, . . . , m.
Using (1.5)(ii), we obtain on U

〈(∇A)(E1, E1), E1〉 =
1

| grad f |3 (〈∇grad fA(grad f), grad f〉
−〈A(∇grad f grad f), grad f〉)

= −m

2
| grad f |. (1.97)

From here, using Lemma 1.42, we also have on U

m∑

k=2

〈(∇A)(Ek, Ek), E1〉 =
m∑

i=1

〈(∇A)(Ei, Ei), E1〉 − 〈(∇A)(E1, E1), E1〉

= 〈trace∇A,E1〉+
m

2
| grad f | = 3m

2
| grad f |. (1.98)
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Using (1.97) and (1.98), we have on U

|∇A|2 =
m∑

i,j=1

|(∇A)(Ei, Ej)|2 =
m∑

i,j,h=1

〈(∇A)(Ei, Ej), Eh〉2

≥ 〈(∇A)(E1, E1), E1〉2 + 3
m∑

k=2

〈(∇A)(Ek, Ek), E1〉2

≥ 〈(∇A)(E1, E1), E1〉2 +
3

m− 1

(
m∑

k=2

〈(∇A)(Ek, Ek), E1〉
)2

=
m2(m + 26)
4(m− 1)

| grad f |2, (1.99)

thus (1.96) is verified, and (1.91) implies

1
2
∆

(
|A|2 +

m2

2
f2

)
≤ 3m2(m− 10)

4(m− 1)
| grad f |2 + 〈T, A〉. (1.100)

Fix p ∈ M and consider {ei}m
i=1 to be an orthonormal basis of TpM , such that

A(ei) = λiei. Then, at p, we get

〈T, A〉 = −1
2

m∑

i,j=1

(λi − λj)2Rijij ,

and then (1.100) becomes (1.90).
Now, since m ≤ 10 and M has non-negative sectional curvature, we obtain

∆
(
|A|2 +

m2

2
|H|2

)
≤ 0

on M . As M is compact, we have

∆
(
|A|2 +

m2

2
|H|2

)
= 0

on M , which implies
(λi − λj)2Rijij = 0 (1.101)

on M . Fix p ∈ M . From the Gauss equation for ϕ, Rijij = 1 + λiλj , for all i 6= j, and
from (1.101) we obtain

(λi − λj)(1 + λiλj) = 0, i 6= j.

Let us now fix λ1. If there exists another principal curvature λj 6= λ1, j > 1, then from
the latter relation we get that λ1 6= 0 and λj = −1/λ1. Thus ϕ has at most two distinct
principal curvatures at p. Since p was arbitrarily fixed, we obtain that ϕ has at most two
distinct principal curvatures everywhere and we conclude by using Theorem 1.21.
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Proposition 1.44 ([16]). Let ϕ : Mm → Sm+1 , m ≥ 3, be a hypersurface. Assume
that M has non-negative sectional curvature and for all p ∈ M there exists Xp ∈ TpM ,
|Xp| = 1, such that Ricci(Xp, Xp) = 0. If ϕ is proper-biharmonic, then ϕ(M) is an
open part of Sm−1(1/

√
2)× S1(1/

√
2).

Proof. Let p ∈ M be an arbitrarily fixed point, and {ei}m
i=1 an orthonormal basis in TpM

such that A(ei) = λiei. For i 6= j, using (1.80), we have that Ricci(ei, ej) = 0. Therefore,
{ei}m

i=1 is also a basis of eigenvectors for the Ricci curvature. Now, if Ricci(ei, ei) > 0
for all i = 1, . . . m, then Ricci(X,X) > 0 for all X ∈ TpM \ {0}. Thus there must exist
i0 such that Ricci(ei0 , ei0) = 0. Assume that Ricci(e1, e1) = 0. From

0 = Ricci(e1, e1) =
m∑

j=2

R1j1j =
m∑

j=2

K1j

and since K1j ≥ 0 for all j ≥ 2, we conclude that K1j = 0 for all j ≥ 2, that is
1+ λ1λj = 0 for all j ≥ 2. The latter implies that λ1 6= 0 and λj = −1/λ1 for all j ≥ 2.
Thus M has two distinct principal curvatures everywhere, one of them of multiplicity
one.

Remark 1.45. If ϕ : Mm → Sm+1, m ≥ 3, is a compact hypersurface, then the
conclusion of Proposition 1.44 holds replacing the hypothesis on the Ricci curvature
with the requirement that the first fundamental group is infinite. In fact, the full
classification of compact hypersurfaces in Sm+1 with non-negative sectional curvature
and infinite first fundamental group was given in [50].

By imposing conditions on the scalar curvature, other classification results can be
obtained. We first have the following estimate for the scalar curvature of compact
proper-biharmonic hypersurfaces with constant scalar curvature in spheres.

Proposition 1.46. Let ϕ : Mm → Sm+1 be a compact proper-biharmonic hypersurface
with constant scalar curvature s. Then

m(m− 2) < s ≤ 2m(m− 1).

Moreover, s = 2m(m− 1) if and only if ϕ(M) = Sm(1/
√

2).

Proof. From the Gauss equation one gets

s = m(m− 1) + m2f2 − |A|2, (1.102)

and, together with (1.75), this implies

1
2
∆f2 = (s−m(m− 2))f2 −m2f4 − | grad f |2. (1.103)

Suppose that s ≤ m(m − 2). Then, from (1.103) we obtain ∆f2 ≤ 0, and since M
is compact this implies that f2 = constant. Now, (1.103) implies f2 = 0 and we have a
contradiction.

Suppose that s ≥ 2m(m − 1). Then, from (1.102), since |A|2 ≥ mf2, we obtain
f2 ≥ 1. Using Corollary 3.3 in [23], we get f2 = 1, thus ϕ(M) = Sm(1/

√
2) and

s = 2m(m− 1).
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Now, using Theorem 2 in [88], we obtain the following classification.

Theorem 1.47. Let ϕ : Mm → Sm+1 be a proper-biharmonic compact hypersurface
with constant scalar curvature s, m ≥ 3. If

(i) s ≥ m(m− 1),

(ii) the squared norm of the shape operator |A|2 satisfies

s−m(m− 1)
m− 1

≤ |A|2 ≤ s− (m− 2)(m− 1)
m− 2

+
(m− 2)(m− 1)

s− (m− 2)(m− 1)
,

then |A|2 = m and either s = 2m(m−1) and ϕ(M) = Sm(1/
√

2), or s = 2(m−2)(m−1)
and ϕ(M) = S1(1/

√
2)× Sm−1(1/

√
2).

By Theorem 11 in [137] and Theorem 2 in [49], with a restriction on the sectional
curvature, we obtain the next rigidity result.

Theorem 1.48. Let ϕ : Mm → Sm+1 be a proper-biharmonic compact hypersurface.
Suppose M has constant scalar curvature s and non-negative sectional curvature.

(i) If M has positive sectional curvature, then ϕ(M) = Sm(1/
√

2).

(ii) If s ≥ m(m − 1), then either ϕ(M) = Sm(1/
√

2) or ϕ(M) = Sm1(1/
√

2) ×
Sm2(1/

√
2), m1 + m2 = m, m1 6= m2.

1.5 PMC biharmonic immersions in Sn

In this section we present some of the most important results on PMC biharmonic
submanifolds in spheres. In order to do that we first need the following lemma.

Lemma 1.49 ([16]). Let ϕ : Mm → Nn be an immersion. Then |AH |2 ≤ |H|2|B|2 on
M . Moreover, |AH |2 = |H|2|B|2 at p ∈ M if and only if either H(p) = 0, or the first
normal of ϕ at p is spanned by H(p).

Proof. Let p ∈ M . If |H(p)| = 0, then the conclusion is obvious. Consider now the
case when |H(p)| 6= 0, let ηp = H(p)/|H(p)| ∈ NpM and let {ei}m

i=1 be a basis in TpM .
Then, at p,

|AH |2 =
m∑

i,j=1

〈AH(ei), ej〉2 =
m∑

i,j=1

〈B(ei, ej),H〉2 = |H|2
m∑

i,j=1

〈B(ei, ej), ηp〉2

≤ |H|2|B|2.

In this case equality holds if and only if
m∑

i,j=1

〈B(ei, ej), ηp〉2 = |B|2, i.e.

〈B(ei, ej), ξp〉 = 0, ∀ ξp ∈ NpM with ξp ⊥ H(p).

This is equivalent to the first normal at p being spanned by H(p) and we conclude.
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Using the above lemma we can prove the following lower bound for the norm of the
second fundamental form.

Proposition 1.50 ([16]). Let ϕ : Mm → Sn be a PMC proper-biharmonic immersion.
Then m ≤ |B|2 and equality holds if and only if ϕ induces a CMC proper-biharmonic
immersion of M into a totally geodesic sphere Sm+1 ⊂ Sn.

Proof. By Corollary 1.3 we have |AH |2 = m|H|2 and, by using Lemma 1.49, we obtain
m ≤ |B|2.

Since H is parallel and nowhere zero, equality holds if and only if the first normal
is spanned by H, and we can apply the codimension reduction result of J. Erbacher
([62]) to obtain the existence of a totally geodesic sphere Sm+1 ⊂ Sn, such that ϕ is
an immersion of M into Sm+1. Since ϕ : Mm → Sn is PMC proper-biharmonic, the
restriction Mm → Sm+1 is CMC proper-biharmonic.

Remark 1.51. (i) Let ϕ = ı ◦ φ : M → Sn be a proper-biharmonic immersion of
class B3. Then m ≤ |B|2 and equality holds if and only if the induced φ is totally
geodesic.

(ii) Let ϕ = ı ◦ (φ1 × φ2) : M1 ×M2 → Sn be a proper-biharmonic immersion of class
B4. Then m ≤ |B|2 and equality holds if and only if both φ1 and φ2 are totally
geodesic.

The above remark suggests to look for PMC proper-biharmonic immersions with
|H| = 1 and |B|2 = m.

Corollary 1.52 ([16]). Let ϕ : Mm → Sn be a PMC proper-biharmonic immersion.
Then |H| = 1 and |B|2 = m if and only if ϕ(M) is an open part of Sm(1/

√
2) ⊂ Sm+1 ⊂

Sn.

The case when M is a surface is more rigid. Using the classification of PMC surfaces
in Sn given by S.-T. Yau [138], and [21, Corollary 5.5], we obtain the following result.

Theorem 1.53 ([21]). Let ϕ : M2 → Sn be a PMC proper-biharmonic surface. Then
ϕ induces a minimal immersion of M into a small hypersphere Sn−1(1/

√
2) ⊂ Sn.

If n = 4 in Theorem 1.53, then the same conclusion holds under the weakened
assumption that the surface is CMC. In order to prove this, the following result is also
needed.

Theorem 1.54 ([21]). Let ϕ : Mm → Sm+2 be a pseudo-umbilical submanifold, m 6= 4.
Then M is proper-biharmonic in Sm+2 if and only if it is minimal in Sm+1(1/

√
2).

We have

Theorem 1.55 ([24]). Let ϕ : M2 → S4 be a CMC proper-biharmonic surface in S4.
Then M2 is minimal in S3(1/

√
2).
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Proof. Following [46], we shall first prove that any proper-biharmonic CMC surface in
S4 is PMC. Then we shall conclude by using Theorem 1.53.

Denote by H the mean curvature vector field of M2 in S4. Since M is CMC proper-
biharmonic with constant mean curvature, its mean curvature does not vanish at any
point and we denote by

E3 =
H

|H| ∈ C(NM). (1.104)

Consider {E1, E2} to be a local orthonormal frame field on M around an arbitrary fixed
point p ∈ M and let E4 be a local unit section in the normal bundle, orthogonal to
E3. We can assume that {E1, E2, E3, E4} is the restriction of a local orthonormal frame
field around p on S4, also denoted by {E1, E2, E3, E4}.

Denote by B the second fundamental form of M in S4 and by A3 and A4 the
Weingarten operators associated to E3 and E4, respectively.

Let ∇S4 and ∇ be the Levi-Civita connections on S4 and on M , respectively, and
denote by ωB

A the connection 1-forms of S4 with respect to {E1, E2, E3, E4}, i.e.

∇S4EA = ωB
AEB, A, B = 1, . . . , 4. (1.105)

From (1.104) we have H = |H|E3 and, since 2H = B(E1, E1)+B(E2, E2), we obtain
that

0 = 2〈H, E4〉 = 〈B(E1, E1), E4〉+ 〈B(E2, E2), E4〉
= 〈A4(E1), E1〉+ 〈A4(E2), E2〉, (1.106)

i.e. traceA4 = 0. As a consequence, we have

|A4|2 = |A4(E1)|2 + |A4(E2)|2
= 〈A4(E1), E1〉2 + 2〈A4(E1), E2〉2 + 〈A4(E2), E2〉2
= 2

(〈A4(E1), E1〉2 + 〈A4(E1), E2〉2
)
. (1.107)

The tangent part of the biharmonic equation (1.2) now writes

A∇⊥E1
E3

(E1) + A∇⊥E2
E3

(E2) = 0. (1.108)

Since

∇⊥E1
E3 = 〈∇⊥E1

E3, E3〉E3 + 〈∇⊥E1
E3, E4〉E4 = 〈∇S4E1

E3, E4〉E4

= ω4
3(E1)E4,

and
∇⊥E2

E3 = ω4
3(E2)E4,

from (1.108) we get
ω4

3(E1)A4(E1) + ω4
3(E2)A4(E2) = 0. (1.109)

Considering now the scalar product by E1 and E2 in (1.109), we obtain




〈A4(E1), E1〉ω4
3(E1) + 〈A4(E2), E1〉ω4

3(E2) = 0,

〈A4(E1), E2〉ω4
3(E1) + 〈A4(E2), E2〉ω4

3(E2) = 0.
(1.110)



50 Chapter 1. Classification results for biharmonic submanifolds in Sn

Equations (1.110) can be thought of as a linear homogeneous system in ω4
3(E1) and

ω4
3(E2). By using (1.106) and (1.107), the determinant of this system is equal to

−1
2
|A4|2.
Suppose now that (∇⊥H)(p) 6= 0. Then there exists a neighborhood U of p in M

such that ∇⊥H 6= 0, at any point of U . Since

∇⊥H = |H|∇⊥E3 = |H|{ω4
3(E1)E[

1 ⊗ E4 + ω4
3(E2)E[

2 ⊗ E4},

the hypothesis ∇⊥H 6= 0 on U implies that (1.110) admits non-trivial solutions at any
point of U . Therefore, the determinant of (1.110) is zero, which means that |A4|2 = 0,
i.e. A4 = 0 on U .

We have two cases.
Case I. If U is pseudo-umbilical in S4, i.e. A3 = |H| Id, from Theorem 1.54 we get that
U is minimal in S3(1/

√
2) and we have a contradiction, since any minimal surface in

S3(1/
√

2) has parallel mean curvature vector field in S4.
Case II. Suppose that there exists q ∈ U such that A3(q) 6= |H| Id. Then, eventually
by restricting U , we can suppose that A3 6= |H| Id on U . Since the principal curvatures
of A3 have constant multiplicity 1, we can suppose that E1 and E2 are such that

A3(E1) = k1E1, A3(E2) = k2E2,

where k1 6= k2 at any point of U . As A4 = 0, we obtain

B(E1, E1) = k1E3, B(E1, E2) = 0, B(E2, E2) = k2E3, (1.111)

on U .
In the following we shall use the Codazzi and Gauss equations in order to get to a
contradiction.
The Codazzi equation is given in this setting by

0 = (∇S4X B)(Y,Z, η)− (∇S4Y B)(X, Z, η), ∀X, Y, Z ∈ C(TM), ∀η ∈ C(NM), (1.112)

where ∇S4X B is defined by

(∇S4X B)(Y, Z, η) = X〈B(Y, Z), η〉 − 〈B(∇XY,Z), η〉 − 〈B(Y,∇XZ), η〉
−〈B(Y, Z),∇⊥Xη〉.

For X = Z = E1, Y = E2 and η = E3, equation (1.112) leads to

0 = E1〈B(E2, E1), E3〉 − E2〈B(E1, E1), E3〉
−〈B(∇E1E2, E1), E3〉+ 〈B(∇E2E1, E1), E3〉
−〈B(E2,∇E1E1), E3〉+ 〈B(E1,∇E2E1), E3)
−〈B(E2, E1),∇⊥E1

E3〉+ 〈B(E1, E1),∇⊥E2
E3〉. (1.113)

Now, from (1.111) we have

B(∇E1E2, E1) = k1ω
1
2(E1)E3, B(E2,∇E1E1) = −k2ω

1
2(E1)E3,
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B(∇E2E1, E1) = 0, 〈B(E1, E1),∇⊥E2
E3〉 = 0,

thus (1.113) implies
E2(k1) = (k2 − k1)ω1

2(E1). (1.114)

Analogously, for X = Z = E2, Y = E1 and η = E3 in (1.112), we obtain

E1(k2) = (k2 − k1)ω1
2(E2). (1.115)

For X = Z = E1, Y = E2 and η = E4 in (1.112), we obtain

0 = 〈B(E2, E1),∇⊥E1
E4〉 − 〈B(E1, E1),∇⊥E2

E4〉
= −k1〈E3,∇⊥E2

E4〉,

which implies
k1ω

4
3(E2) = 0. (1.116)

Analogously, for X = Z = E2, Y = E1 and η = E4 in (1.112), we obtain

k2ω
4
3(E1) = 0. (1.117)

Since ∇⊥H 6= 0 on U , we can suppose that ω4
3(E1) 6= 0 on U . This, together with

(1.117), leads to k2 = 0. From here we get |k1| = 2|H| 6= 0, and consequently k1 is a
non-zero constant. As k1 6= k2, from (1.114) and (1.115) we obtain

ω1
2(E1) = ω1

2(E2) = 0, (1.118)

thus M is flat.
Consider now the Gauss equation (1.50). As M is flat, for X = W = E1 and Y = Z =
E2, equations (1.50) and (1.111) lead to

1 = 〈B(E1, E2), B(E2, E1)〉 − 〈B(E1, E1), B(E2, E2)〉 = −k1k2

= 0, (1.119)

and we have a contradiction.
Therefore, ∇⊥H = 0 and we conclude.

For the higher dimensional case, in [23] there were obtained bounds for the value of
the mean curvature of a PMC proper-biharmonic immersion.

We shall further see that, when m > 2, the situation is more complex and, apart
from 1, the mean curvature can assume other lower values, as expected in view of
Theorem 1.6.

First, let us prove an auxiliary result, concerning non-full proper biharmonic sub-
manifolds of Sn, which generalizes Theorem 5.4 in [21].

Proposition 1.56 ([23]). Let ψ : Mm → Sn−1(a) be a submanifold of a small hyper-
sphere Sn−1(a) in Sn, a ∈ (0, 1). Then M is proper-biharmonic in Sn if and only if
either a = 1/

√
2 and M is minimal in Sn−1(1/

√
2), or a > 1/

√
2 and M is minimal in

a small hypersphere Sn−2(1/
√

2) in Sn−1(a). In both cases, |H| = 1.
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Proof. The converse follows immediately by using Theorem 1.5.
In order to prove the other implication, denote by j and i the inclusion maps of M

in Sn−1(a) and of Sn−1(a) in Sn, respectively.
Up to an isometry of Sn, we can consider

Sn−1(a) =

{
(x1, . . . , xn,

√
1− a2) ∈ Rn+1 :

n∑

i=1

(xi)2 = a2

}
⊂ Sn.

Then

C(TSn−1(a)) =

{
(X1, . . . , Xn, 0) ∈ C(TRn+1) :

n∑

i=1

xiXi = 0

}
,

while η =
1
c

(
x1, . . . , xn,− a2

√
1− a2

)
is a unit section in the normal bundle of Sn−1(a)

in Sn, where c2 = a2

1−a2 , c > 0. The tension and bitension fields of the inclusion
ı = i ◦ j : M → Sn, are given by

τ(ı) = τ(j)− m

c
η, τ2(ı) = τ2(j)− 2m

c2
τ(j) +

1
c

{
|τ(j)|2 − m2

c2
(c2 − 1)

}
η.

Since M is biharmonic in Sn, we obtain

τ2(j) =
2m

c2
τ(j) (1.120)

and

|τ(j)|2 =
m2

c2
(c2 − 1) =

m2

a2
(2a2 − 1).

From here a ≥ 1/
√

2. Also,

|τ(ı)|2 = |τ(j)|2 +
m2

c2
= m2.

This implies that the mean curvature of M in Sn is 1.
The case a = 1/

√
2 is solved by Theorem 1.5.

Consider a > 1/
√

2, thus τ(j) 6= 0. As |H| = 1, by applying Theorem 1.7, M
is a minimal submanifold of a small hypersphere Sn−1(1/

√
2) ⊂ Sn, so it is pseudo-

umbilical and with parallel mean curvature vector field in Sn ([45]). From here it can be
proved that M is also pseudo-umbilical and with parallel mean curvature vector field in
Sn−1(a). As M is not minimal in Sn−1(a), it follows that M is a minimal submanifold
of a small hypersphere Sn−2(b) in Sn−1(a). By a straightforward computation, equation
(1.120) implies b = 1/

√
2 and the proof is completed.

Since every small sphere Sn′(a) in Sn, a ∈ (0, 1), is contained into a great sphere
Sn′+1 of Sn, from Proposition 1.56 we have the following.

Corollary 1.57 ([23]). Let ψ : Mm → Sn′(a) be a submanifold of a small sphere Sn′(a)
in Sn, a ∈ (0, 1). Then M is proper-biharmonic in Sn if and only if either a = 1/

√
2

and M is minimal in Sn′(1/
√

2), or a > 1/
√

2 and M is minimal in a small hypersphere
Sn′−1(1/

√
2) in Sn′(a). In both cases, |H| = 1.
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Let ϕ : Mm → Sn be a submanifold in Sn. For our purpose it is convenient to define,
following [2] and [3], the (1, 1)-tensor field Φ = AH − |H|2I, where I is the identity on
C(TM). We notice that Φ is symmetric, traceΦ = 0 and

|Φ|2 = |AH |2 −m|H|4. (1.121)

Moreover, Φ = 0 if and only if M is pseudo-umbilical.
By using the Gauss equation of M in Sn, one gets the curvature tensor field of M

in terms of Φ as follows.

Lemma 1.58 ([23]). Let ϕ : Mm → Sn be a submanifold with nowhere zero mean
curvature vector field. Then the curvature tensor field of M is given by

R(X,Y )Z = (1 + |H|2)(〈Z, Y 〉X − 〈Z,X〉Y )

+
1
|H|2 (〈Z, Φ(Y )〉Φ(X)− 〈Z, Φ(X)〉Φ(Y ))

+〈Z, Φ(Y )〉X − 〈Z, Φ(X)〉Y + 〈Z, Y 〉Φ(X)− 〈Z,X〉Φ(Y )

+
k−1∑

a=1

{〈Z, Aηa(Y )〉Aηa(X)− 〈Z, Aηa(X)〉Aηa(Y )}, (1.122)

for all X, Y, Z ∈ C(TM), where {H/|H|, ηa}k−1
a=1, k = n−m, denotes a local orthonormal

frame field in the normal bundle of M in Sn.

In the case of hypersurfaces, i.e. k = 1, the previous result holds by making the

convention that
k−1∑

a=1

{. . .} = 0.

For what concerns the expression of trace∇2Φ, which will be needed further, the
following result holds.

Lemma 1.59 ([23]). Let ϕ : Mm → Sn be a submanifold with nowhere zero mean
curvature vector field. If ∇⊥H = 0, then ∇Φ is symmetric and

(trace∇2Φ)(X) = −|Φ|2X +
(

m + m|H|2 − |Φ|2
|H|2

)
Φ(X) + mΦ2(X)

−
k−1∑

a=1

〈Φ, Aηa〉Aηa(X). (1.123)

Proof. From the Codazzi equation, as ∇⊥H = 0, we get (∇AH)(X, Y ) = (∇AH)(Y,X),
for all X,Y ∈ C(TM), where

(∇AH)(X,Y ) = (∇XAH)(Y ) = ∇XAH(Y )−AH(∇XY ).

As the mean curvature of M is constant we have ∇Φ = ∇AH , thus ∇Φ is symmetric;
and trace(∇Φ) = trace(∇AH) = 0.

We recall the Ricci commutation formula

(∇2Φ)(X, Y, Z)− (∇2Φ)(Y,X, Z) = R(X, Y )Φ(Z)− Φ(R(X, Y )Z), (1.124)
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for all X,Y, Z ∈ C(TM), where

(∇2Φ)(X,Y, Z) = (∇X∇Φ)(Y, Z)
= ∇X((∇Φ)(Y, Z))− (∇Φ)(∇XY, Z)− (∇Φ)(Y,∇XZ).

Consider {Xi}m
i=1 to be a local orthonormal frame field on M and {H/|H|, ηa}k−1

a=1,
k = n−m, a local orthonormal frame field in the normal bundle of M in Sn. As ηa is
orthogonal to H, we get traceAηa = 0, for all a = 1, . . . , k−1. Using also the symmetry
of Φ and ∇Φ, (1.124) and (1.122), we have

(trace∇2Φ)(X) =
m∑

i=1

(∇2Φ)(Xi, Xi, X) =
m∑

i=1

(∇2Φ)(Xi, X,Xi)

=
m∑

i=1

{(∇2Φ)(X, Xi, Xi) + R(Xi, X)Φ(Xi)− Φ(R(Xi, X)Xi)}

=
m∑

i=1

(∇2Φ)(X, Xi, Xi)

−|Φ|2X +
(

m + m|H|2 − |Φ|2
|H|2

)
Φ(X) + mΦ2(X)

+
k−1∑

a=1

{(Aηa ◦ Φ− Φ ◦Aηa)(Aηa(X))− 〈Φ, Aηa〉Aηa(X)}.

By a straightforward computation,
m∑

i=1

(∇2Φ)(X, Xi, Xi) = ∇X(trace∇Φ) = 0.

Moreover, from the Ricci equation, since ∇⊥H = 0, we obtain Aηa ◦ AH = AH ◦ Aηa ,
thus Aηa ◦ Φ = Φ ◦Aηa , and we end the proof of this lemma.

We shall also use the following lemma.

Lemma 1.60 ([23]). Let ϕ : Mm → Sn be a submanifold with nowhere zero mean
curvature vector field. If ∇⊥H = 0 and AH is orthogonal to Aηa, for all a = 1, . . . , k−1,
then

− 1
2
∆|Φ|2 = |∇Φ|2 +

(
m + m|H|2 − |Φ|2

|H|2
)
|Φ|2 + m traceΦ3. (1.125)

Proof. Since AH is orthogonal to Aηa and traceAηa = 0, we get 〈Φ, Aηa〉 = 0, for all
a = 1, . . . , k − 1, and (1.123) becomes

(trace∇2Φ)(X) = −|Φ|2X +
(

m + m|H|2 − |Φ|2
|H|2

)
Φ(X) + mΦ2(X). (1.126)

Now, the Weitzenböck formula,

−1
2
∆|Φ|2 = |∇Φ|2 + 〈Φ, trace∇2Φ〉,

together with the symmetry of Φ and (1.126), leads to the conclusion.
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We also recall here the Okumura Lemma.

Lemma 1.61 (Okumura Lemma, [107]). Let b1, . . . , bm be real numbers such that
m∑

i=1

bi = 0. Then

− m− 2√
m(m− 1)

(
m∑

i=1

b2
i

)3/2

≤
m∑

i=1

b3
i ≤

m− 2√
m(m− 1)

(
m∑

i=1

b2
i

)3/2

.

Moreover, equality holds in the right-hand (respectively, left-hand) side if and only if
(m− 1) of the bi’s are nonpositive (respectively, nonnegative) and equal.

By using the above lemmas we obtain the following result on the boundedness of
the mean curvature of proper-biharmonic submanifolds with parallel mean curvature
vector field in spheres, as well as a partial classification result. We shall see that |H|
does not fill out all the interval (0, 1].

Theorem 1.62 ([23]). Let ϕ : Mm → Sn be a PMC proper-biharmonic immersion.
Assume that m > 2 and |H| ∈ (0, 1). Then |H| ∈ (0, (m− 2)/m], and |H| = (m− 2)/m
if and only if locally ϕ(M) is an open part of a standard product

M1 × S1(1/
√

2) ⊂ Sn,

where M1 is a minimal embedded submanifold of Sn−2(1/
√

2). Moreover, if M is com-
plete, then the above decomposition of ϕ(M) holds globally, where M1 is a complete
minimal submanifold of Sn−2(1/

√
2).

Proof. Consider the tensor field Φ associated to M . Since it is traceless, Lemma 1.61
implies that

traceΦ3 ≥ − m− 2√
m(m− 1)

|Φ|3. (1.127)

By (1.7), as M is proper-biharmonic with parallel mean curvature vector field, |AH |2 =
m|H|2 and 〈AH , Aη〉 = 0, for all η ∈ C(NM), η orthogonal to H. From (1.121) we
obtain

|Φ|2 = m|H|2(1− |H|2), (1.128)

thus |Φ| is constant. We can apply Lemma 1.60 and, using (1.127) and (1.128), equation
(1.125) leads to

0 ≥ m2|H|3(1− |H|2)
(

2|H| − m− 2√
m− 1

√
1− |H|2

)
,

thus |H| ∈ (0, m−2
m ].

The condition |H| = m−2
m holds if and only if ∇Φ = 0 and we have equality in

(1.127). This is equivalent to the fact that ∇AH = 0 and, by the Okumura Lemma, the
principal curvatures in the direction of H are constant functions on M and given by

λ1 = . . . = λm−1 = λ =
m− 2

m
,

λm = µ = −m− 2
m

. (1.129)
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Further, we consider the distributions

Tλ = {X ∈ TM : AH(X) = λX}, dimTλ = m− 1,

Tµ = {X ∈ TM : AH(X) = µX}, dimTµ = 1.

One can easily verify that, as AH is parallel, Tλ and Tµ are mutually orthogonal, smooth,
involutive and parallel, and the de Rham decomposition theorem (see [83]) can be
applied.

Thus, for every p0 ∈ M there exists a neighborhood U ⊂ M which is isometric to a
product M̃m−1

1 × I, I = (−ε, ε), where M̃1 is an integral submanifold for Tλ through p0

and I corresponds to the integral curves of the unit vector field Y1 ∈ Tµ on U . Moreover
M̃1 is a totally geodesic submanifold in U and the integral curves of Y1 are geodesics in
U . We note that Y1 is a parallel vector field on U .

In the following, we shall prove that the integral curves of Y1, thought of as curves
in Rn+1, are circles of radius 1/

√
2, all lying in parallel 2-planes. In order to prove this,

consider {H/|H|, ηa}k−1
a=1 to be an orthonormal frame field in the normal bundle and

{Xα}m−1
α=1 an orthonormal frame field in Tλ, on U . We have

traceB(AH(·), ·) =
m−1∑

α=1

B(AH(Xα), Xα) + B(AH(Y1), Y1),

= λmH − 2λB(Y1, Y1).

This, together with (1.6) and (1.129), leads to

B(Y1, Y1) = − 1
λ

H, (1.130)

so |B(Y1, Y1)| = 1. From here, since Aηa and AH commute, we obtain

Aηa(Y1) = 0, ∀a = 1, . . . , k − 1. (1.131)

We also note that

∇Sn

Y1
B(Y1, Y1) = − 1

λ
(∇⊥Y1

H −AH(Y1)) = −Y1. (1.132)

Consider c : I → U to be an integral curve for Y1 and denote by γ : I → Sn, γ = ı◦c,
where ı : M → Sn is the inclusion map. Denote by E1 = γ̇ = Y1 ◦γ. Since Y1 is parallel,
c is a geodesic on M and, using equations (1.130) and (1.132), we obtain the following
Frenet equations for the curve γ in Sn,

∇Sn

γ̇ E1 = B(Y1, Y1) = − 1
λ

H = E2,

∇Sn

γ̇ E2 = −E1. (1.133)

Let now γ̃ =  ◦ γ : I → Rn+1, where  : Sn → Rn+1 denotes the inclusion map.
Denote by Ẽ1 = ˙̃γ = Y1 ◦ γ̃. From (1.133) we obtain the Frenet equations for γ̃ in Rn+1,

∇Rn+1

ėγ Ẽ1 = − 1
λ

H − γ̃ =
√

2Ẽ2,

∇Rn+1

ėγ Ẽ2 = −
√

2Ẽ1,
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thus γ̃ is a circle of radius 1/
√

2 in Rn+1 and it lies in a 2-plane with corresponding
vector space generated by Ẽ1(0) and Ẽ2(0).

Since Y1 and − 1
λH − x, with x the position vector field, are parallel in Rn+1 along

any curve of M̃1, we conclude that the 2-planes determined by the integral curves of Y1

have the same corresponding vector space, thus are parallel.
Consider the immersions

φ : M̃1 × I → Sn,

and
φ̃ =  ◦ φ : M̃1 × I → Rn+1.

Using the fact that M̃1 is an integral submanifold of Tλ and (1.131), it is not difficult
to verify that B̃(X, Y ) = 0, for all X ∈ C(TM̃1) and Y ∈ C(TI), thus we can apply
the Moore Lemma in [98]. As the 2-planes determined by the integral curves of Y1 have
the same corresponding vector space and by Corollary 1.57, we obtain the orthogonal
decomposition

Rn+1 = Rn−1 ⊕ R2 (1.134)

and U = M1 ×M2, where Mm−1
1 ⊂ Rn−1 and M2 ⊂ R2 is a circle of radius 1/

√
2. We

can see that the center of this circle is the origin of R2. Thus M1 ⊂ Sn−2(1/
√

2) ⊂ Rn−1

and from Theorem 1.6, since U is biharmonic in Sn, we conclude that M1 is a minimal
submanifold in Sn−2(1/

√
2) ⊂ Rn−1. Consequently, the announced result holds locally.

We can thus conclude that M is an open part of a standard product

M1 × S1(1/
√

2) ⊂ Sn,

where M1 is a minimal submanifold in Sn−2(1/
√

2).

Remark 1.63. The same result of Theorem 1.62 was proved, independently, in [133].

The following consequences for hypersurfaces follow.

Corollary 1.64 ([23]). Let ϕ : Mm → Sm+1 be a CMC proper-biharmonic hypersurface
with m > 2. Then |H| ∈ (0, (m− 2)/m] ∪ {1}. Moreover, |H| = 1 if and only if ϕ(M)
is an open subset of the small hypersphere Sm(1/

√
2), and |H| = (m− 2)/m if and only

if ϕ(M) is an open subset of the standard product Sm−1(1/
√

2)× S1(1/
√

2).

Corollary 1.65. Let ϕ : Mm → Sm+1 be a complete proper-biharmonic hypersurface.

(i) If |H| = 1, then ϕ(M) = Sm(1/
√

2) and ϕ is an embedding.

(ii) If |H| = (m− 2)/m, m > 2, then ϕ(M) = Sm−1(1/
√

2) × S1(1/
√

2) and the
universal cover of M is Sm−1(1/

√
2)× R.

If we assume that M is compact and |B| is bounded we obtain the following theorem.

Theorem 1.66 ([16]). Let ϕ : Mm → Sm+d be a compact PMC proper-biharmonic
immersion with m ≥ 2, d ≥ 2 and

m < |B|2 ≤ m
d− 1
2d− 3

(
1 +

3d− 4
d− 1

|H|2 − m− 2√
m− 1

|H|
√

1− |H|2
)

.
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(i) If m = 2, then |H| = 1, and either d = 2, |B|2 = 6, ϕ(M2) = S1(1/2)×S1(1/2) ⊂
S3(1/

√
2) or d = 3, |B|2 = 14/3, ϕ(M2) is the Veronese minimal surface in

S3(1/
√

2).

(ii) If m > 2, then |H| = 1, d = 2, |B|2 = 3m and

ϕ(Mm) = Sm1

(√
m1/(2m)

)
× Sm2

(√
m2/(2m)

)
⊂ Sm+1(1/

√
2),

where m1 + m2 = m, m1 ≥ 1 and m2 ≥ 1.

Proof. The result follows from the classification of compact PMC immersions with
bounded |B|2 given in Theorem 1.6 of [118].

Inspired by the case |H| = m−2
m of Theorem 1.62, in the following we shall study

proper-biharmonic submanifolds in Sn with parallel mean curvature vector field and
parallel Weingarten operator associated to the mean curvature vector field.

We shall also need the following general result.

Proposition 1.67 ([23]). Let ϕ : Mm → Sn be a submanifold with nowhere zero mean
curvature vector field. If ∇⊥H = 0, ∇AH = 0 and AH is orthogonal to Aη, for all
η ∈ C(NM), η ⊥ H, then M is either pseudo-umbilical, or it has two distinct principal
curvatures in the direction of H. Moreover, the principal curvatures in the direction of
H are solutions of the equation

mt2 +
(

m− |AH |2
|H|2

)
t−m|H|2 = 0. (1.135)

Proof. As ∇AH = 0, the principal curvatures in the direction of H are constant on M .
Denote by {Xi}m

i=1 a local orthonormal frame field on M such that AH(Xi) = λiXi,
i = 1, . . . ,m. Clearly,

∑m
i=1 λi = m|H|2.

Since AH is parallel, ∇XAH(Y ) = AH(∇XY ), thus R(X,Y ) and AH commute for
all X, Y ∈ C(TM). In particular,

R(Xi, Xj)AH(Xj) = AH(R(Xi, Xj)Xj),

and by considering the scalar product with Xj and using the symmetry of AH , we get

(λi − λj)〈R(Xi, Xj)Xj , Xi〉 = 0, ∀i, j = 1, . . . , m. (1.136)

Consider {H/|H|, ηa}k−1
a=1, k = n − m, a local orthonormal frame field in the normal

bundle of M in Sn. We have

B(Xi, Xi) =
λi

|H|2 H +
k−1∑

a=1

〈Aηa(Xi), Xi〉ηa, (1.137)

and for λi 6= λj , and so i 6= j, as Xi is orthogonal to Xj and AH ◦Aηa = Aηa ◦AH , for
all a = 1, . . . , k − 1, we obtain

B(Xi, Xj) =
1
|H|2 〈AH(Xi), Xj〉H +

k−1∑

a=1

〈Aηa(Xi), Xj〉ηa = 0. (1.138)
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By using (1.137) and (1.138) in the Gauss equation for M in Sn, one gets, for λi 6= λj ,

〈R(Xi, Xj)Xj , Xi〉 = 1 +
λiλj

|H|2 +
k−1∑

a=1

〈Aηa(Xi), Xi〉〈Aηa(Xj), Xj〉. (1.139)

In fact, (1.136), together with (1.139), implies

(λi − λj)

(
1 +

λiλj

|H|2 +
k−1∑

a=1

〈Aηa(Xi), Xi〉〈Aηa(Xj), Xj〉
)

= 0, (1.140)

and the above formula holds ∀i, j = 1, . . . ,m. Summing on i in (1.140) we obtain

0 = m|H|2 −
(

m− |AH |2
|H|2

)
λj −mλ2

j +
k−1∑

a=1

〈Aηa , AH〉〈Aηa(Xj), Xj〉

−
k−1∑

a=1

traceAηa〈Aηa(Xj), AH(Xj)〉.

Since traceAηa = 0 and 〈AH , Aηa〉 = 0, for all a = 1, . . . , k − 1, we conclude the proof.

Corollary 1.68 ([23]). Let Mm, m > 2, be a proper-biharmonic submanifold in Sn. If
∇⊥H = 0, ∇AH = 0 and |H| ∈ (0, m−2

m ], then M has two distinct principal curvatures
λ and µ in the direction of H, of different multiplicities m1 and m2, respectively, and





λ =
m1 −m2

m

µ = −m1 −m2

m

|H| = |m1 −m2|
m

.

(1.141)

Proof. Since M is proper-biharmonic, all the hypotheses of Proposition 1.67 are satis-
fied. Taking into account (1.7), from (1.135) follows that the principal curvatures of
M in the direction of H satisfy the equation t2 = |H|2. As |H| ∈ (0, m−2

m ], M cannot
be pseudo-umbilical, thus it has two distinct principal curvatures λ = −µ 6= 0 in the
direction of H. If m1 denotes the multiplicity of λ and m2 the multiplicity of µ, from
traceAH = m|H|2 we have (m1−m2)λ = mλ2. Since λ 6= 0, we obtain (1.141). Notice
also that m1 6= m2.

The case |H| = m− 2
m

was solved in Theorem 1.62, thus we shall consider now only

the case |H| ∈ (0, m−2
m ). Since |H| = |m1 −m2|

m
, m1 6= m2 we obtain the following.

Corollary 1.69 ([23]). Let ϕ : Mm → Sn, m ∈ {3, 4}, be a PMC proper-biharmonic im-
mersion with ∇AH = 0. Then |H| ∈ {(m− 2)/m, 1}. Moreover, if |H| = (m− 2)/m,
then locally ϕ(M) is an open part of a standard product

M1 × S1(1/
√

2) ⊂ Sn,
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where M1 is a minimal embedded submanifold of Sn−2(1/
√

2), and if |H| = 1, then ϕ
induces a minimal immersion of M into Sn−1(1/

√
2).

We are left with the case m ≥ 5 and m1 ≥ 2, m2 ≥ 2 and we are able to prove the
following result.

Theorem 1.70 ([23]). Let ϕ : Mm → Sn be a PMC proper-biharmonic immersion with
∇AH = 0. Assume that |H| ∈ (0, (m− 2)/m). Then, m > 4 and, locally,

ϕ(M) = Mm1
1 ×Mm2

2 ⊂ Sn1(1/
√

2)× Sn2(1/
√

2) ⊂ Sn,

where Mi is a minimal embedded submanifold of Sni(1/
√

2), mi ≥ 2, i = 1, 2, m1+m2 =
m, m1 6= m2, n1 + n2 = n − 1. In this case |H| = |m1 −m2|/m. Moreover, if M is
complete, then the above decomposition of ϕ(M) holds globally, where Mi is a complete
minimal submanifold of Sni(1/

√
2), i = 1, 2.

Proof. We are in the hypotheses of Corollary 1.68, thus AH has two distinct eigenvalues
λ = m1−m2

m and µ = −m1−m2
m . Consider the distributions

Tλ = {X ∈ TM : AH(X) = λX}, dimTλ = m1,

Tµ = {X ∈ TM : AH(X) = µX}, dimTµ = m2.

As AH is parallel, Tλ and Tµ are mutually orthogonal, smooth, involutive and parallel,
and from the de Rham decomposition theorem follows that for every p0 ∈ M there exists
a neighborhood U ⊂ M which is isometric to a product M̃m1

1 ×M̃m2
2 , such that the sub-

manifolds which are parallel to M̃1 in M̃1× M̃2 correspond to integral submanifolds for
Tλ and the submanifolds which are parallel to M̃2 correspond to integral submanifolds
for Tµ.

Consider the immersions
φ : M̃1 × M̃2 → Sn,

and
φ̃ =  ◦ φ : M̃1 × M̃2 → Rn+1.

It can be easily verified that B̃(X, Y ) = B(X, Y ), for all X ∈ C(TM̃1) and Y ∈
C(TM̃2). Since AH ◦ Aη = Aη ◦ AH for all η ∈ C(NM), we have that Tλ and Tµ are
invariant subspaces for Aη, for all η ∈ C(NM), thus

〈B(X, Y ), η〉 = 〈Aη(X), Y 〉 = 0, ∀η ∈ C(NM).

Thus B̃(X,Y ) = 0, for all X ∈ C(TM̃1) and Y ∈ C(TM̃2), and we can apply the Moore
Lemma. In this way we have an orthogonal decomposition Rn+1 = Rn0⊕Rn1+1⊕Rn2+1

and φ̃ is a product immersion. From Corollary 1.57, since |H| 6= 1, follows that n0 = 0.
Thus

φ̃ = φ̃1 × φ̃2 : M̃1 × M̃2 → Rn1+1 ⊕ Rn2+1.

We denote by M1 = φ̃1(M̃1) ⊂ Rn1+1, M2 = φ̃2(M̃2) ⊂ Rn2+1 and we have U =
M1 ×M2 ⊂ Sn.
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Consider now {Xα}m1
α=1 an orthonormal frame field in Tλ and {Y`}m2

`=1 an orthonormal

frame field in Tµ, on U . From (1.6), by using the fact that λ = −µ =
m1 −m2

m
, we

obtain
m1∑

α=1

B(Xα, Xα) =
m1

λ
H,

m2∑

`=1

B(Y`, Y`) = −m2

λ
H. (1.142)

Since ∇⊥H = 0, from (1.142) follows that M1 × {p2} is pseudo-umbilical and with
parallel mean curvature vector field in Rn+1, for any p2 ∈ M2. But M1 × {p2} is
included in Rn1+1×{p2} which is totally geodesic in Rn+1, thus M1 is pseudo-umbilical
and with parallel mean curvature vector field in Rn1+1. This implies that M1 is minimal
in Rn1+1 or minimal in a hypersphere of Rn1+1. The first case leads to a contradiction,
since M1 × {p2} ⊂ Sn and cannot be minimal in Rn+1. Thus M1 is minimal in a
hypersphere Sn1

c1 (r1) ⊂ Rn1+1, where c1 ∈ Rn1+1 denotes the center of the hypersphere.
In the following we will show that c1 = 0. Since U ⊂ Sn and M1 ⊂ Sn1

c1 (r1), we get
|p1|2 + |p2|2 = 1 and |p1 − c1|2 = r2

1, for all p1 ∈ M1. This implies 〈p1, c1〉 = constant
for all p1 ∈ M1. Thus 〈u1, c1〉 = 0, for all u1 ∈ Tp1M1 and for all p1 ∈ M1. From the
Moore Lemma follows that c1 = 0, thus M1 ⊂ Sn1(r1) ⊂ Rn1+1.

From (1.142) also follows that the mean curvature of M1 × {p2} in Sn is 1, so its
mean curvature in Rn+1 is

√
2. As Rn1+1 × {p2} is totally geodesic in Rn+1 it follows

that the mean curvature of M1 in Rn1+1 is
√

2 too. Further, as M1 is minimal in Sn1(r1),
we get r1 = 1/

√
2.

Analogously, M2 is minimal in a hypersphere Sn2(1/
√

2) in Rn2+1, and we conclude
the proof.

Remark 1.71. In the case of a non-minimal hypersurface the hypotheses ∇⊥H = 0
and ∇AH = 0 are equivalent to ∇⊥B = 0, i.e. the hypersurface is parallel. Such hyper-
surfaces have at most two principal curvatures and the proper-biharmonic hypersurfaces
with at most two principal curvatures in Sn are those given by (1.8) and (1.9) (see [21]).

If one searches for a relaxation of the hypothesis ∇AH = 0 in Theorem 1.70, natural
candidates would be RAH = 0 (see, for example, [115]), or M has at most two distinct
principal curvatures in the direction of H everywhere. But the following can be proved.

Proposition 1.72 ([23]). Let ϕ : Mm → Sn be a PMC proper-biharmonic immersion.
The following statements are equivalent:

(i) RAH = 0, where (RAH)(X, Y, Z) = (R(X,Y )AH)(Z),

(ii) M has at most two distinct principal curvatures in the direction of H everywhere,

(iii) ∇AH = 0.

Another restriction which leads to ∇AH = 0, thus to a classification result for PMC
proper-biharmonic immersions in spheres, concerns the sectional curvature.

Proposition 1.73. Let ϕ : Mm → Sn be a PMC proper-biharmonic immersion with
non-negative sectional curvature. Then ∇AH = 0. Moreover, if there exists p ∈ M such
that RiemM (p) > 0, then ϕ is pseudo-umbilical.
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Proof. Since M is PMC, |H| = constant and AH is a Codazzi operator. Moreover, as M
is also biharmonic, |AH | = constant and equation (2.8) in [49] applied for AH , implies

0 = |∇AH |2 +
∑

i<j

Rijij(λi − λj)2,

where {λi}n
i=1 denote the principal curvatures of M in the direction of H. The conclusion

is now immediate.

We should note that there exist examples of proper-biharmonic submanifolds of S5

and S7 which are not PMC but with ∇AH = 0 (see [120] and [67]).

1.6 Parallel biharmonic immersions in Sn

An immersed submanifold is said to be parallel if its second fundamental form B is
parallel, that is ∇⊥B = 0.

In the following we give the classification for proper-biharmonic parallel immersed
surfaces in Sn.

Theorem 1.74 ([16]). Let ϕ : M2 → Sn be a parallel surface in Sn. If ϕ is proper-
biharmonic, then the codimension can be reduced to 3 and ϕ(M) is an open part of
either

(i) a totally umbilical sphere S2(1/
√

2) lying in a totally geodesic S3 ⊂ S5, or

(ii) the minimal flat torus S1(1/2) × S1(1/2) ⊂ S3(1/
√

2); ϕ(M) lies in a totally
geodesic S4 ⊂ S5, or

(iii) the minimal Veronese surface in S4(1/
√

2) ⊂ S5.

Proof. The proof relies on the fact that parallel submanifolds in Sn are classified in the
following three categories (see, for example, [40]):

(a) a totally umbilical sphere S2(r) lying in a totally geodesic S3 ⊂ Sn;

(b) a flat torus lying in a totally geodesic S4 ⊂ Sn defined by

(0, . . . , 0, a cosu, a sinu, b cos v, b sin v,
√

1− a2 − b2), a2 + b2 ≤ 1;

(c) a surface of positive constant curvature lying in a totally geodesic S5 ⊂ Sn defined
by

r

(
0, . . . , 0,

vw√
3
,
uw√

3
,

uv√
3
,
u2 − v2

2
√

3
,
u2 + v2 − 2w2

6
,

√
1− r2

r

)
,

with u2 + v2 + w2 = 3 and 0 < r ≤ 1.

In case (a) the biharmonicity implies directly (i). Requiring the immersion in (b) to
be biharmonic and using [21, Corollary 5.5] we get that

√
a2 + b2 = 1/2 and then

(ii) follows. The immersion in (c) induces a minimal immersion of the surface in the
hypersphere S4(r) ⊂ S5. Then, applying [30, Theorem 3.5], the immersion in (c) reduces
to that in (iii).
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In all three cases of Theorem 1.74, ϕ is of type B3 and thus its mean curvature is
1. In the higher dimensional case we know, from Theorem 1.7, that if |H| = 1, then ϕ
is of type B3. Moreover, if we assume that ϕ is also parallel, then the induced minimal
immersion in Sn−1(1/

√
2) is parallel as well.

If ∇⊥B = 0, then ∇⊥H = 0 and ∇AH = 0. Therefore Theorem 1.62 and The-
orem 1.70 hold also for parallel proper-biharmonic immersions in Sn. From this and
Theorem 1.74, in order to classify all parallel proper-biharmonic immersions in Sn, we
are left with the case when m > 2 and |H| ∈ (0, 1).

Theorem 1.75 ([16]). Let ϕ : Mm → Sn be a parallel proper-biharmonic immersion.
Assume that m > 2 and |H| ∈ (0, 1). Then |H| ∈ (0, (m− 2)/m]. Moreover:

(i) |H| = (m− 2)/m if and only if locally ϕ(M) is an open part of a standard product

M1 × S1(1/
√

2) ⊂ Sn,

where M1 is a parallel minimal embedded submanifold of Sn−2(1/
√

2);

(ii) |H| ∈ (0, (m− 2)/m) if and only if m > 4 and, locally,

ϕ(M) = Mm1
1 ×Mm2

2 ⊂ Sn1(1/
√

2)× Sn2(1/
√

2) ⊂ Sn,

where Mi is a parallel minimal embedded submanifold of Sni(1/
√

2), mi ≥ 2,
i = 1, 2, m1 + m2 = m, m1 6= m2, n1 + n2 = n− 1.

Proof. We only have to prove that Mi is a parallel minimal submanifold of Sni(1/
√

2),
mi ≥ 2. For this, denote by Bi the second fundamental form of Mi in Sni(1/

√
2),

i = 1, 2. If B denotes the second fundamental form of M1 × M2 in Sn, it is easy to
verify, using the expression of the second fundamental form of Sn1(1/

√
2)× Sn2(1/

√
2)

in Sn, that

(∇⊥(X1,X2)B)((Y1, Y2), (Z1, Z2)) = ((∇⊥X1
B1)(Y1, Z1), (∇⊥X2

B2)(Y2, Z2)),

for all X1, Y1, Z1 ∈ C(TM1), X2, Y2, Z2 ∈ C(TM2). Consequently, M1 ×M2 is parallel
in Sn if and only if Mi is parallel in Sni(1/

√
2), i = 1, 2.

1.7 Open problems

We list some open problems and conjectures that seem to be natural.

Conjecture 1. The only proper-biharmonic hypersurfaces in Sm+1 are the open parts of
hyperspheres Sm(1/

√
2) or of the standard products of spheres Sm1(1/

√
2)×Sm2(1/

√
2),

m1 + m2 = m, m1 6= m2.

Taking into account the results presented in this chapter, we have a series of state-
ments equivalent to Conjecture 1:

1. A proper-biharmonic hypersurface in Sm+1 has at most two principal curvatures
everywhere.
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2. A proper-biharmonic hypersurface in Sm+1 is parallel.

3. A proper-biharmonic hypersurface in Sm+1 is CMC and has non-negative sectional
curvature.

4. A proper-biharmonic hypersurface in Sm+1 is isoparametric.

One can also state the following intermediate conjecture.

Conjecture 2. The proper-biharmonic hypersurfaces in Sm+1 are CMC.

Related to PMC immersions and, in particular, to Theorem 1.70, we propose the
following problem.

Problem 1. Find a PMC proper-biharmonic immersion ϕ : Mm → Sn such that AH

is not parallel.



Chapter 2
Biharmonic submanifolds in
complex space forms

2.1 Introduction

In the first part of Chapter 2 we obtain some general properties of proper-biharmonic
submanifolds with constant mean curvature, or parallel mean curvature vector field, of
the complex projective space endowed with the standard Fubini-Study metric. When
the ambient space is a complex space form of nonpositive holomorphic curvature we
obtain non-existence results.

In the second part we consider the Hopf map defined as the restriction of the natural
projection π : Cn+1 \ {0} → CPn to the sphere S2n+1, which defines a Riemannian sub-
mersion. For a real submanifold M̄ of CPn we denote by M := π−1(M̄) the Hopf-tube
over M̄ . We obtain the formula which relates the bitension field of the inclusion of M̄ in
CPn and the bitension field of the inclusion of M = π−1(M̄) in S2n+1 (Theorem 2.12).
Using this formula we are able to produce a new class of proper-biharmonic submani-
folds M̄ of CPn when M is of “Clifford type” (Theorem 2.18), and to reobtain a result
in [139] when M is a product of circles (Theorem 2.26).

We note that M̄ is minimal (harmonic) in CPn if and only if M is minimal in S2n+1

(see [86]) but, for what concerns the biharmonicity, the result does not hold anymore.
In the last part of the chapter we focus on the geometry of proper-biharmonic

curves of CPn. We characterize all proper-biharmonic curves of CPn in terms of their
curvatures and complex torsions. Then, using the classification of holomorphic helices
of CP 2 given in [91], we determine all proper-biharmonic curves of CP 2 (Theorem 2.41).

2.2 Biharmonic submanifolds of complex space forms

Let En
C(4c) be a complex space form of holomorphic sectional curvature 4c. Let us

denote by J̄ the complex structure and by 〈, 〉 the Riemannian metric on En
C(4c). Then

its curvature operator is given, for vector fields X,Y and Z, by

RE
n
C(4c)(X, Y )Z = c{〈Y, Z〉X − 〈X, Z〉Y (2.1)

+〈J̄Y, Z〉J̄X − 〈J̄X, Z〉J̄Y + 2〈X, J̄Y 〉J̄Z}.

65
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Let now
̄ : M̄ m̄ → En

C(4c)

be the canonical inclusion of a submanifold M̄ in En
C(4c) of real dimension m̄. Then

the bitension field becomes

τ2(̄) = −m̄{∆̄H̄ − cm̄H̄ + 3cJ̄
(
J̄H̄

)>}, (2.2)

where H̄ denotes the mean curvature vector field, ∆̄ is the rough Laplacian, and ()>

denotes the tangential component to M̄ . The overbar notation will be justified in the
next section. If we assume that J̄H̄ is tangent to M̄ , then (2.2) simplifies to

τ2(̄) = −m̄{∆̄H̄ − c(m̄ + 3)H̄}. (2.3)

Decomposing (2.3) with respect to its tangential and normal components we get

Proposition 2.1 ([66]). Let M̄ be a real submanifold of En
C(4c) of dimension m̄ such

that J̄H̄ is tangent to M̄ . Then M̄ is biharmonic if and only if
{

∆⊥H̄ + trace B̄(·, ĀH̄(·))− c(m̄ + 3)H̄ = 0
4 trace Ā∇⊥

(·)H̄
(·) + m̄ grad(|H̄|2) = 0

, (2.4)

where Ā denotes the Weingarten operator, B̄ the second fundamental form, H̄ the mean
curvature vector field, ∇⊥ and ∆⊥ the connection and the Laplacian in the normal
bundle of M̄ in En

C(4c).

If M̄ is a hypersurface, then J̄H̄ is tangent to M̄ , and the previous proposition gives
the following result of [77, 78].

Corollary 2.2. Let M̄ be a real hypersurface of En
C(4c) of non-zero constant mean

curvature. Then it is proper-biharmonic if and only if

|B̄|2 = 2c(n + 1).

Proposition 2.1 can be applied also in the case of Lagrangian submanifolds. We
recall here that M̄ is called a Lagrangian submanifold if dim M̄ = n and ̄∗Ω = 0, where
Ω is the fundamental 2-form on En

C(4c) defined by Ω(X, Y ) = 〈X, J̄Y 〉, for any vector
fields X and Y tangent to En

C(4c).

Corollary 2.3 ([66]). Let M̄ be a Lagrangian submanifold of En
C(4c) with parallel mean

curvature vector field. Then it is biharmonic if and only if

trace B̄(·, ĀH̄(·)) = c(n + 3)H̄.

In the sequel we shall consider only the case of complex space forms with positive
holomorphic sectional curvature. A partial motivation of this fact is that Corollary 2.2
rules out the case c ≤ 0. As usual, we consider the complex projective space CPn =
(Cn+1 \ {0})/C∗, endowed with the Fubini-Study metric, as a model for the complex
space form of positive constant holomorphic sectional curvature 4.
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Proposition 2.4 ([66]). Let M̄ be a real submanifold of CPn of dimension m̄ such that
J̄H̄ is tangent to M̄ . Assume that it has non-zero constant mean curvature. We have

(a) If M̄ is proper-biharmonic, then |H̄|2 ∈ (0, m̄+3
m̄ ].

(b) If |H̄|2 = m̄+3
m̄ , then M̄ is proper-biharmonic if and only if it is pseudo-umbilical

and ∇⊥H̄ = 0.

Proof. Let M̄ be a real submanifold of CPn of dimension m̄ such that J̄H̄ is tangent
to M̄ . Assume that it has non-zero constant mean curvature, and it is biharmonic. As
M̄ is biharmonic we have

∆⊥H̄ = (m̄ + 3)H̄ − trace B̄(·, ĀH̄(·)),

so

〈∆⊥H̄, H̄〉 = (m̄ + 3)|H̄|2 −
m̄∑

i=1

〈B̄(Xi, ĀH̄(Xi)), H̄〉 = (m̄ + 3)|H̄|2 − |ĀH̄ |2.

Replacing in the Weitzenböck formula (see, for example, [59])

1
2
∆|H̄|2 = 〈∆⊥H̄, H̄〉 − |∇⊥H̄|2

the expression of 〈∆⊥H̄, H̄〉, and using the fact that |H̄| is constant, we obtain

(m̄ + 3)|H̄|2 = |ĀH̄ |2 + |∇⊥H̄|2. (2.5)

Let p be an arbitrary point of M̄ and let {Xi}m̄
i=1 be an orthonormal basis of TpM̄ such

that ĀH̄(Xi) = λiXi. We have

λi = 〈ĀH̄(Xi), Xi〉 = 〈B̄(Xi, Xi), H̄〉

which implies
m̄∑

i=1

λi = m̄|H̄|2

or, equivalently,

|H̄|2 =
∑m̄

i=1 λi

m̄
.

Then the square of the norm of ĀH̄ becomes

|ĀH̄ |2 =
m̄∑

i=1

〈ĀH̄(Xi), ĀH̄(Xi)〉 =
m̄∑

i=1

(λi)2.

Replacing in (2.5) we get

m̄ + 3
m̄

m̄∑

i=1

λi =
m̄∑

i=1

(λi)2 + |∇⊥H̄|2 ≥ (
∑m̄

i=1 λi)2

m̄
+ |∇⊥H̄|2.
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Therefore
(m̄ + 3)|H̄|2 ≥ m̄|H̄|4 + |∇⊥H̄|2 ≥ m̄|H̄|4,

so
|H̄|2 ∈ (0,

m̄ + 3
m̄

].

(b) If |H̄|2 = m̄+3
m̄ and M̄ is biharmonic, the above inequalities become equalities,

and therefore λ1 = · · · = λm̄ and ∇⊥H̄ = 0, i.e. M̄ is pseudo-umbilical and ∇⊥H̄ = 0.
Conversely, it is clear that if |H̄|2 = m̄+3

m̄ and M̄ is pseudo-umbilical with ∇⊥H̄ = 0,
then M̄ is proper-biharmonic.

Remark 2.5. We shall see in Proposition 2.28 that the upper bound of |H̄|2 is reached
in the case of curves.

Proposition 2.6 ([66]). Let M̄ be a proper-biharmonic real hypersurface of CPn of
constant mean curvature |H̄|. Then its scalar curvature sM̄ is constant and given by

sM̄ = 4n2 − 2n− 4 + (2n− 1)2|H̄|2.
Proof. Let M̄2n−1 be a proper-biharmonic real hypersurface of CPn with constant mean
curvature, so |B̄|2 = 2(n + 1).

The Gauss equation for the submanifold M̄ of CPn is

〈RM̄ (X,Y )Z, T 〉 = 〈RCP n
(X,Y )Z, T 〉 (2.6)

−〈B̄(Y, T ), B̄(X, Z)〉+ 〈B̄(X, T ), B̄(Y, Z)〉,
where RM̄ is the curvature tensor field of M̄ .

Let us denote by RicciM̄ (X, Y ) = trace{Z → RM̄ (Z, X)Y } the Ricci tensor.
Computing (2.6) for X = T = Xi, where {Xi}2n−1

i=1 is a local orthonormal frame field,
we have

〈RM̄ (Xi, Y )Z, Xi〉 = 〈〈Z, Y 〉Xi − 〈Z, Xi〉Y, Xi〉
+〈〈J̄Y, Z〉J̄Xi, Xi〉 − 〈〈J̄Xi, Z〉J̄Y, Xi〉
+2〈〈Xi, J̄Y 〉J̄Z,Xi〉
−〈B̄(Y, Xi), B̄(Xi, Z)〉+ 〈B̄(Xi, Xi), B̄(Y, Z)〉

= 〈Z, Y 〉 − 〈Z, Xi〉〈Y, Xi〉
+〈J̄Y, Z〉〈J̄Xi, Xi〉 − 〈J̄Xi, Z〉〈J̄Y, Xi〉
+2〈Xi, J̄Y 〉〈J̄Z,Xi〉 − 〈B̄(Y, Xi), B̄(Z, Xi)〉
+〈B̄(Xi, Xi), B̄(Y,Z)〉

= 〈Z, Y 〉 − 〈Z, Xi〉〈Y, Xi〉+ 3〈J̄Z,Xi〉〈J̄Y, Xi〉
−〈Ā(Y ), Xi〉〈Ā(Z), Xi〉+ 〈B̄(Xi, Xi), B̄(Y, Z)〉,

where H̄ = |H̄|η̄ and Ā = Āη̄. Therefore

RicciM̄ (Y, Z) =
2n−1∑

i=1

〈RM̄ (Xi, Y )Z, Xi〉

= (2n− 1)〈Z, Y 〉 − 〈Z, Y 〉+ 3〈(J̄Z)>, (J̄Y )>〉
−〈Ā(Y ), Ā(Z)〉+ (2n− 1)|H̄|〈Ā(Y ), Z〉.
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Now,

〈J̄Z, J̄Y 〉 = 〈Z, Y 〉
= 〈(J̄Z)> + 〈J̄Z, η̄〉η̄, (J̄Y )> + 〈J̄Y, η̄〉η̄〉
= 〈(J̄Z)>, (J̄Y )>〉+ 〈J̄Z, η̄〉〈J̄Y, η̄〉,

which implies
〈(J̄Z)>, (J̄Y )>〉 = 〈Z, Y 〉 − 〈Z, J̄ η̄〉〈Y, J̄ η̄〉.

Replacing in the above expression of the Ricci tensor, we get

RicciM̄ (Y, Z) = 2(n− 1)〈Z, Y 〉+ 3{〈Y, Z〉 − 〈Z, J̄η〉〈Y, J̄ η̄〉}
−〈Ā(Y ), Ā(Z)〉+ (2n− 1)|H̄|〈Ā(Y ), Z〉.

Finally, taking the trace, we have

sM̄ =
2n−1∑

i=1

ρM̄ (Xi, Xi) = 2(n− 1)(2n− 1) + 3(2n− 1)

−|J̄ η̄|2 − |Ā|2 + (2n− 1)2|H̄|2
= (2n− 2 + 3)(2n− 1)− 1− 2(n + 1) + (2n− 1)2|H̄|2
= 4n2 − 2n− 4 + (2n− 1)2|H̄|2.

Another important family of submanifolds of CPn is that consisting of the subman-
ifolds for which J̄H̄ is normal to M̄ . In this case, using an argument similar to the case
when J̄H̄ is tangent to M̄ , we have the following result.

Proposition 2.7 ([66]). Let M̄ be a real submanifold of CPn of dimension m̄ such that
J̄H̄ is normal to M̄ . Then M̄ is biharmonic if and only if

{
∆⊥H̄ + trace B̄(·, ĀH̄(·))− m̄H̄ = 0
4 trace Ā∇⊥

(·)H̄
(·) + m̄ grad(|H̄|2) = 0

. (2.7)

Moreover, if J̄H̄ is normal to M̄ and M̄ has parallel mean curvature, then M̄ is bihar-
monic if and only if

trace B̄(·, ĀH̄(·)) = m̄H̄.

Also in this case, if the mean curvature is constant we can bound its value, as it is
shown by the following.

Proposition 2.8 ([66]). Let M̄ be a real submanifold of CPn of dimension m̄ such that
J̄H̄ is normal to M̄ . Assume that it has non-zero constant mean curvature. We have

(a) If M̄ is proper-biharmonic, then |H̄|2 ∈ (0, 1].

(b) If |H̄|2 = 1, then M̄ is proper-biharmonic if and only if it is pseudo-umbilical and
∇⊥H̄ = 0.

Remark 2.9. We shall see in Proposition 2.32 (a), that the upper bound is reached in
the case of curves.
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2.3 The Hopf fibration and the biharmonic equation

Let π : Cn+1 \ {0} → CPn be the natural projection. Then π restricted to the sphere
S2n+1 of Cn+1 gives rise to the Hopf fibration π : S2n+1 → CPn and if 4c = 4 then
π : S2n+1 → CPn defines a Riemannian submersion. In the sequel we shall look at
S2n+1 as a hypersurface of R2n+2 and denote by Ĵ the complex structure of R2n+2.

Let M̄ be a real submanifold of CPn of dimension m̄ and denote by M := π−1(M̄)
the Hopf-tube over M̄ . If we denote by ̄ : M̄ → CPn and  : M → S2n+1 the respective
inclusions we have the following diagram

M
−−−−→ S2n+1

y
y π

M̄
̄−−−−→ CPn.

We shall now find the relation between the bitension field of the inclusion ̄ and the
bitension field of the inclusion . For this, let {X̄k}m̄

k=1 be a local orthonormal frame
field tangent to M̄ , 1 ≤ m̄ ≤ 2n− 1, and let {η̄α}2n

α=m̄+1 be a local orthonormal frame
field normal to M̄ . Let us denote by Xk := X̄H

k and ηα := η̄H
α the horizontal lifts with

respect to the Hopf map and by ξ the Hopf vector field on S2n+1 which is tangent to
the fibres of the Hopf fibration, i.e. ξ(p) = −Ĵp, for any p ∈ S2n+1. Then {ξ,Xk} is a
local orthonormal frame field tangent to M and {ηα} is a local orthonormal frame field
normal to M .

Lemma 2.10 ([66]). Let X = X̄H ∈ C(TM), where X̄ ∈ C(TM̄), and V = V̄ H ∈
C(−1(TS2n+1)), where V̄ ∈ C((̄)−1(TCPn)). Then

∇
XV = (∇̄

X̄
V̄ )H + 〈V, ĴX〉ξ = (∇̄

X̄
V̄ )H + (〈V̄ , J̄X̄〉 ◦ π)ξ,

where ∇ and ∇̄ denote the pull-back connections on −1(TS2n+1) and (̄)−1(TCPn),
respectively.

Proof. Decomposing ∇
XV in its horizontal and vertical components we have

∇
XV = ∇

X̄H V̄ H = (∇̄
X̄

V̄ )H + 〈∇
XV, ξ〉ξ.

Now,

〈∇
XV, ξ〉 = −〈V,∇

Xξ〉 = −〈V, ∇̂Xξ + 〈X, ξ〉p〉
= 〈V, ∇̂X Ĵp〉 = 〈V, ĴX〉 = 〈V̄ , J̄X̄〉 ◦ π,

where ∇̂ is the Levi-Civita connection on the Euclidean space R2n+2.

Lemma 2.11 ([66]). If V = V̄ H ∈ C(−1(TS2n+1)), V̄ ∈ C((̄)−1(TCPn)), then

∆V = (∆̄V̄ )H + 2 div((ĴV )>)ξ + 〈V, Ĵτ()〉ξ + V − Ĵ(ĴV )>,

where ∆ and ∆̄ are the rough Laplacians acting on sections of −1(TS2n+1) and
(̄)−1(TCPn), respectively, whilst (V )> denotes the component of V tangent to M .
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Proof. The Laplacian ∆ is given by

−∆V =
m̄∑

i=1

{∇
Xi
∇

Xi
V −∇

∇M
Xi

Xi
V }+∇

ξ∇
ξV −∇

∇M
ξ ξ

V.

We compute each term separately. From Lemma 2.10 we have

∇
Xi
∇

Xi
V = (∇̄

X̄i
∇̄

X̄i
V̄ )H + 〈∇

Xi
V, ĴXi〉ξ +∇

Xi
(〈V, ĴXi〉ξ)

= (∇̄
X̄i
∇̄

X̄i
V̄ )H + 2〈∇

Xi
V, ĴXi〉ξ

+〈V,∇
Xi

ĴXi〉ξ + 〈ĴV, Xi〉ĴXi.

Using
∇

Xi
ĴXi = Ĵ∇

Xi
Xi + ξ

we get

∇
Xi
∇

Xi
V = (∇̄

X̄i
∇̄

X̄i
V̄ )H + 2〈∇

Xi
V, ĴXi〉ξ (2.8)

+〈V, Ĵ∇
Xi

Xi〉ξ + Ĵ(〈ĴV, Xi〉Xi).

Next
∇

∇M
Xi

Xi
V = (∇̄

∇M̄
X̄i

X̄i
V̄ )H + 〈V, Ĵ∇M

Xi
Xi〉ξ. (2.9)

Summing (2.8) and (2.9) up we find

−∆V = −(∆̄V̄ )H + 2
m̄∑

i=1

〈∇
Xi

V, ĴXi〉ξ + 〈V, Ĵ
m̄∑

i=1

(∇
Xi

Xi −∇M
Xi

Xi)〉ξ

+
m̄∑

i=1

Ĵ(〈ĴV, Xi〉Xi) +∇
ξ∇

ξV

= −(∆̄V̄ )H + 2
m̄∑

i=1

〈∇
Xi

V, ĴXi〉ξ + 〈V, Ĵτ()〉ξ

+Ĵ(ĴV )> +∇
ξ∇

ξV.

We now compute the extra terms in the above equation.

m̄∑

i=1

〈∇
Xi

V, ĴXi〉 =
m̄∑

i=1

{−Xi〈ĴV, Xi〉+ 〈ĴV,∇
Xi

Xi〉} (2.10)

= 〈ĴV, τ()〉 −
m̄∑

i=1

{Xi〈ĴV, Xi〉 − 〈ĴV,∇M
Xi

Xi〉}

= 〈ĴV, τ()〉 − div((ĴV )>).

Finally

∇
ξV = H(∇

ξV ) + 〈∇
ξV, ξ〉ξ = H(∇

ξV )

= H(∇
V ξ) = H(∇̂V ξ + 〈V, ξ〉p) = H(−ĴV ) = −ĴV
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which gives
∇

ξ∇
ξV = −V.

Before giving the relation between the bitension fields we need to compute the trace
of the curvature operators. One gets immediately

− traceRS
2n+1

(d, τ())d = (m̄ + 1)τ() (2.11)

and
− traceRCP n

(d̄, τ(̄))d̄ = m̄τ(̄)− 3J̄(J̄τ(̄))>. (2.12)

We are now ready to state the main theorem of this section.

Theorem 2.12 ([66]). Let M̄ be a real submanifold of CPn of dimension m̄ and denote
by M := π−1(M̄) the corresponding Hopf-tube. If we denote by ̄ : M̄ → CPn and
 : M → S2n+1 the respective inclusions we have that

(τ2(̄))H = τ2()− 4Ĵ(Ĵτ())> + 2 div((Ĵτ())>)ξ. (2.13)

Proof. From (0.1) and (2.11) we have

τ2() = −∆τ() + (m̄ + 1)τ().

Next, since τ() = (τ(̄))H , using Lemma 2.11 and (2.12) we find the assertion of the
theorem.

Remark 2.13 ([66]). (i) Using the horizontal lift, it is straightforward to check that
(2.13) can be written as

(τ2(̄))H = τ2()− 4(J̄(J̄τ(̄))>)H + 2(divM̄ ((J̄τ(̄))>) ◦ π)ξ.

(ii) If Ĵτ() is normal to M , then τ2(̄) = 0 if and only if τ2() = 0.

(iii) If Ĵτ() is tangent to M , then τ2(̄) = 0 and divM̄ ((J̄τ(̄))>) = 0 if and only if
τ2() + 4τ() = 0.

(iv) Assume that, locally, M = π−1(M̄) = S1×M̃ , where M̃ is an integral submanifold
of S2n+1, i.e. 〈X̃p̃, ξ(p̃)〉 = 0, for any vector X̃p̃ tangent to M̃ . Denote by ̃ :
M̃ → S2n+1 the canonical inclusion, and by {φt} the flow of ξ. We know that
τ2()(t,p̃) = (dφt)p̃(τ2(̃)), see [70], and we can check that, at p̃,

(τ2(̄))H = τ2(̃)− 4Ĵ(Ĵτ(̃))> + 2divM̃ ((Ĵτ(̃))>)ξ.

To state the next results we recall that a smooth map ϕ : (M, g) → (N, h) is called
λ-biharmonic if it is a critical point of the λ-bienergy

E2(ϕ) + λE(ϕ),

where λ is a real constant. The critical points of the λ-bienergy satisfy the equation

τ2(ϕ)− λτ(ϕ) = 0.
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Proposition 2.14 ([66]). Let M̄ be a real hypersurface of CPn of constant mean cur-
vature and denote by M = π−1(M̄) the Hopf-tube over M̄ . Then τ2(̄) = 0 if and only
if τ2() + 4τ() = 0, i.e.  is (−4)-biharmonic.

Proof. We have (J̄τ(̄))> = J̄τ(̄) and it remains to prove that divM̄ (J̄τ(̄)) = 0. Let η̄
be a local unit section in the normal bundle of M̄ in CPn and consider
{X̄1, J̄X̄1, . . . , X̄n−1, J̄X̄n−1, J̄ η̄} a local orthonormal frame field tangent to M̄ . Since M̄
is a hypersurface of constant mean curvature, it is enough to prove that divM̄ (J̄ η̄) = 0.
But, denoting by Āη̄ the shape operator of M̄ ,

〈∇M̄
X̄a

J̄ η̄, X̄a〉 = 〈Āη̄(X̄a), J̄X̄a〉, 〈∇M̄
J̄X̄b

J̄ η̄, J̄X̄b〉 = −〈Āη̄(X̄b), J̄X̄b〉,
for any 1 ≤ a, b ≤ n− 1, and

〈∇M̄
J̄η̄J̄ η̄, J̄ η̄〉 = 0,

so we conclude.

Proposition 2.15 ([66]). Let M̄ be a Lagrangian submanifold of CPn with parallel
mean curvature vector field and denote by M = π−1(M̄) the Hopf-tube over M̄ . Then ̄
is biharmonic if and only if  is (−4)-biharmonic.

Proof. Since M̄ is a Lagrangian submanifold, dim M̄ = m̄ = n and J̄(TM̄) = NM̄
(therefore J̄(NM̄) = TM̄). We have that J̄τ(̄) ∈ C(TM̄) and we shall prove that
∇M̄ J̄τ(̄) = 0 which implies divM̄ (J̄τ(̄)) = 0. Indeed, for any vector fields X̄ and Ȳ
tangent to M̄ we have

〈∇M̄
X̄ J̄τ(̄), Ȳ 〉 = 〈∇̄

X̄
J̄τ(̄), Ȳ 〉 = 〈J̄∇̄

X̄
τ(̄), Ȳ 〉 = 〈−J̄Āτ(̄)(X̄), Ȳ 〉

= 0.

We end this section with the following result.

Proposition 2.16 ([66]). Let M̄ be a real submanifold of CPn such that J̄τ(̄) is normal
to M̄ and denote by M = π−1(M̄) the Hopf-tube over M̄ . Then ̄ is biharmonic if and
only if  is biharmonic.

2.4 Biharmonic submanifolds of Clifford type

For a fixed n > 1, consider the spheres S2p+1(a) ⊂ R2p+2 = Cp+1 and S2q+1(b) ⊂
R2q+2 = Cq+1, with a2+b2 = 1 and p+q = n−1. Denote by T p,q

a,b = S2p+1(a)×S2q+1(b) ⊂
S2n+1 the Clifford torus. Let now M1 be a minimal submanifold of S2p+1(a) of dimension
m1 and M2 a minimal submanifold of S2q+1(b) of dimension m2. The submanifold
M1 × M2 is clearly minimal in T p,q

a,b and, according to [29], is proper-biharmonic in
S2n+1 if and only if a = b =

√
2/2 and m1 6= m2. If M1 ×M2 is invariant under the

action of the one-parameter group of isometries generated by the Hopf vector field ξ on
S2n+1, then it projects onto a submanifold of CPn and we could ask for which values
of a, b, m1,m2 is it a proper-biharmonic submanifold.

We start with the following lemma.
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Lemma 2.17 ([66]). Let denote by 1 : Mm1
1 ×Mm2

2 → T p,q
a,b the inclusion of M1 ×M2

in the Clifford torus and by  : T p,q
a,b → S2n+1 the inclusion of the Clifford torus in the

sphere. Then 



τ( ◦ 1) = (
a

b
m2 − b

a
m1)η = cη

τ2( ◦ 1) = c(m1 + m2 − b2

a2
m1 − a2

b2
m2)η

, (2.14)

where η is the unit normal section in the normal bundle of T p,q
a,b in S2n+1 given by

η(x, y) = ( b
ax,−a

b y), x ∈ S2p+1(a), y ∈ S2q+1(b).

Proof. Let p = (x, y) ∈ T p,q
a,b , x ∈ R2p+2, y ∈ R2q+2, |x| = a, |y| = b. Then η(x, y) =

( b
ax,−a

b y) defines a unit normal section in the normal bundle of T p,q
a,b in S2n+1. We

identify X = (X, 0) ∈ TpT
p,q
a,b , Y = (0, Y ) ∈ TpT

p,q
a,b , and a straightforward computation

gives

∇
Xη = −A(X) =

b

a
X, ∇

Y η = −A(Y ) = −a

b
Y.

Let {Xk = (Xk, 0)} be a local orthonormal frame field tangent to S2p+1(a) and {Yl =
(0, Yl)} a local orthonormal frame field tangent to S2q+1(b). Then, applying the com-
position law for the tension field and using that 1 is harmonic, we have

τ( ◦ 1) = d(τ(1)) + trace∇d(d1, d1)

=
m1∑

k=1

〈A(Xk), Xk〉η +
m2∑

l=1

〈A(Yl), Yl〉η = (
a

b
m2 − b

a
m1)η = c η.

To compute τ2(◦1), let us choose around p = (x, y) ∈ M1×M2 a frame field {(Xk, Yl)}
such that {Xk}m1

k=1 is a geodesic frame field around x and {Yl}m2
l=1 is a geodesic frame

field around y. Then at p

−∆◦1η =
m1∑

k=1

∇◦1
Xk
∇◦1

Xk
η +

m2∑

l=1

∇◦1
Yl
∇◦1

Yl
η

=
b

a

m1∑

k=1

∇◦1
Xk

Xk − a

b

m2∑

l=1

∇◦1
Yl

Yl

=
b

a

m1∑

k=1

(B(Xk, Xk) +∇T p,q
a,b

Xk
Xk)− a

b

m2∑

l=1

(B(Yl, Yl) +∇T p,q
a,b

Yl
Yl)(2.15)

=
b

a

m1∑

k=1

B(Xk, Xk)− a

b

m2∑

l=1

B(Yl, Yl)

= (− b2

a2
m1 − a2

b2
m2)η.

Finally, using the standard formula for the curvature of S2n+1, we get

− traceRS
2n+1

(d( ◦ 1), τ( ◦ 1))d( ◦ 1) = (m1 + m2)τ( ◦ 1) = (m1 + m2)cη,

that summed up with (2.15) gives the lemma.



2.4. Biharmonic submanifolds of Clifford type 75

Theorem 2.18 ([66]). Let π : S2n+1 → CPn be the Hopf map. Let M = Mm1
1 ×Mm2

2 be
the product of two minimal submanifolds of S2p+1(a) and S2q+1(b), respectively. Assume
that M is invariant under the action of the one-parameter group of isometries generated
by the Hopf vector field ξ on S2n+1. Then π(M) is a proper-biharmonic submanifold of
CPn if and only if M is (−4)-biharmonic, that is





a2 + b2 = 1
a

b
m2 − b

a
m1 6= 0

b2

a2
m1 +

a2

b2
m2 = 4 + m1 + m2

, (2.16)

where m1 and m2 are the dimensions of M1 and M2, respectively.

Proof. The Hopf vector field ξ is a Killing vector field on S2n+1 that, at a point p =
(x, y), is given by

ξ = −(−x2, x1, . . . ,−x2p+2, x2p+1,−y2, y1, . . . ,−y2q+2, y2q+1) = (ξ1, ξ2).

Since M1 ×M2 is invariant under the action of the one-parameter group of isometries
generated by ξ, it remains Killing when restricted to M1 ×M2. As

Ĵη = (− b

a
ξ1,

a

b
ξ2),

it follows that Ĵη is a Killing vector field on M1 ×M2.
Since div(Ĵτ(◦ 1)) = div(cĴη) = 0, using Remark 2.13 (iii), it results that π(M1×

M2) is a biharmonic submanifold of CPn if and only if

τ2( ◦ 1) + 4τ( ◦ 1) = 0.

Finally, using Lemma 2.17, we get

τ2( ◦ 1) + 4τ( ◦ 1) = c(4 + m1 + m2 − b2

a2
m1 − a2

b2
m2)η.

Remark 2.19 ([66]). If M1 = S2p+1(a) and M2 = S2q+1(b), we recover the result
in [77, 78] concerning the proper-biharmonic homogeneous real hypersurfaces of type A
in CPn.

Example 2.20 ([66]). Let e1 and e3 be two constant unit vectors in E2n+2, with e3

orthogonal to e1 and Ĵe1. We consider the circles S1(a) and S1(b) lying in the 2-planes
spanned by {e1, Ĵe1} and {e3, Ĵe3}, respectively. Then M = S1(a)× S1(b) is invariant
under the flow-action of ξ, and π(M) is a proper-biharmonic curve of CPn if and only

if a =
√

2±√2
2 .

Example 2.21 ([66]). For p = 0 and q = n−1, we get that π(S1(a)×S2n−1(b)) is proper-
biharmonic in CPn if and only if a2 = n+3±√n2+2n+5

4(n+1) . In particular, π(S1(a) × S3(b))

is a proper-biharmonic real hypersurface in CP 2 if and only if a2 = 5±√13
12 .
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Example 2.22 ([66]). If p = q then M = T p,p
a,b is never a proper-biharmonic hypersur-

face of S2n+1, and it is easy to check that π(M) is a proper-biharmonic hypersurface of

CPn if and only if a2 = 2p+2−
√

2(p+1)

4(p+1) .

Example 2.23 ([66]). Let M = S2p+1(a) × Sp
(

b√
2

)
× Sp

(
b√
2

)
, p odd. Then M is

minimal in T p,p
a,b , and is proper-biharmonic in S2n+1 if and only if a = b = 1√

2
. By a

straightforward computation we can check that π(M) is proper-biharmonic in CPn if
and only if a2 = 8p+7±√32p+25

16p+12 .

2.4.1 Sphere bundle of all vectors tangent to S2p+1(a)

We have seen that if M is a product submanifold in T p,q
a,b then its projection π(M) can

be proper-biharmonic in CPn. But when M is not a product, the situation can be more
complicated as it is illustrated by the following example.

We consider the sphere of radius a

S2p+1(a) = {x ∈ R2p+2 : (x1)2 + · · ·+ (x2p+2)2 = a2}
and its sphere bundle of all vectors tangent to S2p+1(a) and of norm b, that is

M = T bS2p+1(a) = {(x, y) ∈ R4p+4 : x, y ∈ R2n+2, |x| = a, |y| = b, 〈x, y〉 = 0}.
It is easy to check that M is invariant under the flow-action of the characteristic vector
field ξ, which means e−itp ∈ M , ∀p ∈ M and ∀t ∈ R. Let (x0, y0) ∈ M . Then

T(x0,y0)M = {Z0 = (X0, Y0) ∈ R4p+4 : 〈x0, X0〉 = 0, 〈y0, Y0〉 = 0,

〈X0, y0〉+ 〈x0, Y0〉 = 0}.
In order to find a basis in T(x0,y0)M , we consider {y0, y2, y3, . . . , y2p+1} an orthogonal
basis in Tx0S2p+1(a), each vector being of norm b. We think M as a hypersurface of the
tangent bundle TS2p+1(a), and we consider on TS2p+1(a) and M the induced metrics
from the canonical metric on R4p+4

M → TS2p+1(a) → R4p+4.

The above inclusions are the canonical ones.
The vertical lifts of the tangent vectors y2, y3, . . . , y2p+1, in (x0, y0), are

yV
2 = (0, y2), yV

3 = (0, y3), . . . , yV
2p+1 = (0, y2p+1),

and the horizontal lifts of y0, y2, y3, . . . , y2p+1, in (x0, y0), are

yH
0 = (y0,− b2

a2
x0), yH

2 = (y2, 0), yH
3 = (y3, 0), . . . , yH

2p+1 = (y2p+1, 0).

The vectors {yH
0 , yH

2 , yH
3 , . . . , yH

2p+1, y
V
2 , yV

3 , . . . , yV
2p+1} form an orthogonal basis in

T(x0,y0)M and

|yV
2 | = |yV

3 | = · · · = |yV
2p+1| = b, |yH

2 | = |yH
3 | = · · · = |yH

2p+1| = b, |yH
0 | =

b

a
.
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The vector C(x0, y0) = yV
0 = (0, y0) is tangent to TS2p+1(a) in (x0, y0) and orthog-

onal to M .
From now on we shall consider a2 + b2 = 1 and the inclusions

M → S2p+1(a)× S2p+1(b) → S4p+3 → R4p+4.

We define η1(x0, y0) = (y0, x0) and η2(x0, y0) = (x0,−a2

b2
y0). We have that η1 and η2

are normal to M , and

η1(x0, y0) ∈ T(x0,y0)(S2p+1(a)× S2p+1(b)), |η1(x0, y0)| = 1

η2(x0, y0) ∈ T(x0,y0)S4p+3, η2(x0, y0) ⊥ T(x0,y0)(S
2p+1(a)× S2p+1(b)), |η2(x0, y0)| = a

b
.

We denote by B(x0,y0) the second fundamental form of M in S4p+3, in the point (x0, y0).
By a straightforward computation we obtain

B(x0,y0)(Z0, Z0) = −2〈X0, Y0〉η1 − b2

a2
(|X0|2 − a2

b2
|Y0|2)η2, (2.17)

where Z0 = (X0, Y0) ∈ T(x0,y0)M . From (2.17) we get

H(x0, y0) =
2p

4p + 1
a2 − b2

a2
η2 = cη2.

Therefore M is minimal in S4p+3 if and only if a = b = 1√
2
.

It is not difficult to check that




∇S4p+3

yH
0

η2 = η1, ∇S
4p+3

yH
2

η2 = yH
2 , ∇S4p+3

yH
3

η2 = yH
3 , . . . , ∇S4p+3

yH
2p+1

η2 = yH
2p+1

∇S4p+3

yV
2

η2 = −a2

b2
yV
2 , ∇S4p+3

yV
3

η2 = −a2

b2
yV
3 , . . . , ∇S4p+3

yV
2p+1

η2 = −a2

b2
yV
2p+1

∇S4p+3

yH
0

η1 = − b2

a2 η2, ∇S
4p+3

yH
2

η1 = yV
2 , ∇S4p+3

yH
3

η1 = yV
3 , . . . , ∇S4p+3

yH
2p+1

η1 = yV
2p+1

∇S4p+3

yV
2

η1 = yH
2 , ∇S4p+3

yV
3

η1 = yH
3 , . . . , ∇S4p+3

yV
2p+1

η1 = yH
2p+1

.

(2.18)
From (2.18) we obtain that

traceA∇⊥
(·)η2

(·) = 0 and traceB(·, Aη2(·)) = 2p(
a2

b2
+

b2

a2
)η2. (2.19)

Denoting W (x0, y0) = yH
0 , we get

−∆⊥η2 =
a2

b2
(∇⊥W∇⊥W η2 −∇⊥∇M

W W
η2) = −η2. (2.20)

Before concluding we give the following Lemma which follows by direct computation.



78 Chapter 2. Biharmonic submanifolds in complex space forms

Lemma 2.24 ([66]). Let Nn be a hypersurface of a Riemmanian manifold (Pn+1, 〈, 〉),
and X ∈ C(TP ) a Killing vector field. We denote X> = (X/N )> ∈ C(TN). Then
div X> = n〈H, X〉, where H is the mean curvature vector field of N . In particular, if
N is minimal then div X> = 0.

Now we can state

Proposition 2.25 ([66]). Let M = T bS2p+1(a) be the sphere bundle of all vectors of
norm b tangent to S2p+1(a). Assume that a2 + b2 = 1 and p ≥ 1. Then we have

(a) M is never proper-biharmonic in S4p+3.

(b) M is (−4)-biharmonic in S4p+3 if and only if a2 = 2p+1±√2p+1
4p+2 .

(c) M is minimal in T p,p
a,b = S2p+1(a)× S2p+1(b).

(d) π(M) is never proper-biharmonic in CPn.

Proof. As the mean curvature vector field of M in S4p+3 is H = cη2, where c =
2p

4p+1
a2−b2

a2 , then M is biharmonic if and only if
{
−∆⊥η2 − traceB(·, Aη2(·)) + (4p + 1)η2 = 0
2 traceA∇⊥

(·)η2
(·) + 4p+1

2 grad(c|η2|2) = 0
. (2.21)

From (2.19) and (2.20) we get that M is biharmonic if and only if

−η2 − 2p(
a2

b2
+

b2

a2
)η2 + (4p + 1)η2 = 0,

which is equivalent to a = b, that is M is minimal in S4p+3.
(b) We obtain that M is (−4)-biharmonic if and only if

−η2 − 2p(
a2

b2
+

b2

a2
)η2 + (4p + 1)η2 + 4η2 = 0,

which holds if and only if a2 = 2p+1±√2p+1
4p+2 .

(c) We denote by Ȧ the shape operator of M in S2p+1(a)× S2p+1(b), Ȧ = Ȧη1 . We
can check that{

Ȧ(yH
0 ) = 0, Ȧ(yH

2 ) = −yV
2 , Ȧ(yH

3 ) = −yV
3 , . . . , Ȧ(yH

2p+1) = −yV
2p+1

Ȧ(yV
2 ) = −yH

2 , Ȧ(yV
3 ) = −yH

3 , . . . , Ȧ(yV
2p+1) = −yH

2p+1

(2.22)

and therefore trace Ȧ = 0, which means that M is minimal in S2p+1(a)× S2p+1(b).
(d) We first define

ξ3(x, y) = (Ĵx,−a2

b2
Ĵy) = (−ξ1,

a2

b2
ξ2), ∀(x, y) ∈ S2p+1(a)× S2p+1(b).

The vector field ξ3 is a Killing vector field on S2p+1(a) × S2p+1(b). We observe that
ξ3/M = Ĵη2. Since M is minimal in S2p+1(a) × S2p+1(b), from Lemma 2.24, we get
div(Ĵη2)> = 0. Therefore π(M) is biharmonic in CPn if and only if

τ2()− 4Ĵ(Ĵτ())> = 0,

which is not satisfied.
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2.4.2 Circles products.

We shall recover a result of Zhang (see [139]).
We denote by T the (n + 1)-dimensional Clifford torus

 : T = S1(a1)× · · · × S1(an+1) → S2n+1,

where a2
1 + · · · + a2

n+1 = 1. The projection T̄ = π(T ) is a Lagrangian submanifold in
CPn of parallel mean curvature vector field.

Theorem 2.26 ([139]). The Lagrangian submanifold T̄ = π(T ) of CPn is proper-
biharmonic if and only if T is (−4)-biharmonic, that is

{
a2

k0
6= 1

n+1 for some k0 ∈ {1, 2, . . . , n + 1}
d ak − 1

a3
k

= 2
ak

(n + 3)((n + 1)a2
k − 1), k ∈ {1, 2, . . . , n + 1} , (2.23)

where d =
∑n+1

j=1
1
a2

j
.

Proof. We denote a point x ∈ T by

x = (x1, . . . , xn+1) = (x1
1, x

2
1, . . . , x

1
n+1, x

2
n+1),

where we identify

xk = (x1
k, x

2
k) = (0, 0, . . . , 0, 0, x1

k, x
2
k, 0, 0, . . . , 0, 0), k = 1, . . . , n + 1.

We define ηk(x) = 1
ak

xk and Xk = Ĵηk, k = 1, . . . , n + 1, where

Ĵ(x1
1, x

2
1, . . . , x

1
n+1, x

2
n+1) = (−x2

1, x
1
1, . . . ,−x2

n+1, x
1
n+1).

The vector fields {Xk} form an orthonormal frame field of C(TT ). It is easy to check
that, at a point x,

B(Xk, Xk) = − 1
ak

ηk + x

and for k 6= j:
B(Xk, Xj) = 0.

Therefore τ() =
∑n+1

k=1((n + 1)ak − 1
ak

)ηk, which implies that (Ĵτ())> = Ĵτ() and
div(Ĵτ()) = 0.
Since∇⊥τ() = 0 and Aτ()(Xk) = −((n+1)− 1

a2
k
)Xk, by a straightforward computation

we get τ2() + 4τ() = 0 if and only if the desired relation is satisfied.

Remark 2.27 ([66]). Following [139], for n = 2, we obtain that T̄ is a proper-
biharmonic Lagrangian surface in CP 2 if and only if a2

1 = 9±√41
20 and a2

2 = a2
3 = 11∓√41

40
(see also [119]).
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2.5 Biharmonic curves in CP n

Let γ̄ : I ⊂ R → CPn be a curve parametrized by arc-length. The curve γ is called a
Frenet curve of osculating order d, 1 ≤ d ≤ 2n, if there exist d orthonormal vector fields
{Ē1 = γ̄′, . . . , Ēd} along γ̄ such that





∇̄Ē1
Ē1 = κ̄1Ē2

∇̄Ē1
Ēi = −κ̄i−1Ēi−1 + κ̄iĒi+1, ∀i = 2, . . . , d− 1

∇̄Ē1
Ēd = −κ̄d−1Ēd−1

, (2.24)

where {κ̄1, κ̄2, κ̄3, . . . , κ̄d−1} are positive functions on I called the curvatures of γ̄ and
∇̄ denotes the Levi-Civita connection on CPn.

A Frenet curve of osculating order d is called a helix of order d if κ̄i = constant > 0
for 1 ≤ i ≤ d − 1. A helix of order 2 is called a circle, and a helix of order 3 is simply
called helix.

Following S. Maeda and Y. Ohnita [92], we define the complex torsions of the curve
γ̄ by τ̄ij = 〈Ēi, J̄Ēj〉, 1 ≤ i < j ≤ d. A helix of order d is called a holomorphic helix of
order d if all the complex torsions are constant.

Using the Frenet equations, the bitension field of γ̄ becomes

τ2(γ̄) = −3κ̄1κ̄
′
1Ē1 + (κ̄′′1 − κ̄3

1 − κ̄1κ̄
2
2 + κ̄1)Ē2 (2.25)

+(2κ̄′1κ̄2 + κ̄1κ̄
′
2)Ē3 + κ̄1κ̄2κ̄3Ē4 − 3κ̄1τ̄12J̄Ē1.

In order to solve the biharmonic equation τ2(γ̄) = 0, because of the last term in (2.25),
we must split our study in three cases.

2.5.1 Biharmonic curves with τ̄12 = ±1

In this case J̄Ē2 = ±E1 and, using the Frenet equations of γ̄, we obtain

J̄(∇̄Ē1
Ē1) = ±κ̄1Ē1 = ∇̄Ē1

(∓Ē2) = ∓∇̄Ē1
Ē2,

so
∇̄Ē1

Ē2 = −κ̄1Ē1.

Consequently, κ̄i = 0, i ≥ 2, and, from (2.25), we obtain the following.

Proposition 2.28 ([66]). A Frenet curve γ̄ : I ⊂ R→ CPn parametrized by arc-length
with τ̄12 = ±1 is proper-biharmonic if and only if it is a circle with κ̄1 = 2.

Next, let us consider a curve γ̄ : I ⊂ R → CPn parametrized by arc-length with
τ̄12 = ±1, and denote by γ : I ⊂ R → S2n+1 one of its horizontal lifts. We shall
characterize the biharmonicity of γ̄ in terms of γ.

We denote by ∇̇ the Levi-Civita connection on S2n+1. We have γ′ = E1 = (Ē1)H

and
∇̇E1E1 = (∇̄Ē1

Ē1)H = κ̄1Ē
H
2 = κ1E2,
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i.e. κ1 = κ̄1 and E2 = ĒH
2 = ∓(J̄Ē1)H = ∓ĴE1. It follows

∇̇E1E2 = (∇̄Ē1
Ē2)H + 〈∇̇E1E2, ξ〉ξ

= −κ1E1 − 〈E2, ∇̇E1ξ〉ξ
= −κ1E1 ∓ 〈E2, E2〉ξ
= −κ1E1 ∓ ξ

and this means κ2 = 1 and E3 = ∓ξ. Then ∇̇E1E3 = ∓∇̇E1ξ = −E2.
In conclusion γ is a helix with κ1 = κ̄1 and κ2 = 1.
Now, we have Ĵτ(γ) = κ1ĴE2 = ±κ1E1, which is tangent to γ, and then

Ĵ{(Ĵτ(γ))>} = Ĵ2τ(γ) = −τ(γ).

From

div{(J̄τ(γ̄))>} = div{κ̄1〈J̄Ē2, Ē1〉Ē1}
= 〈∇̄Ē1

(κ̄1〈J̄Ē2, Ē1〉)Ē1, Ē1〉
= κ̄′1〈J̄Ē2, Ē1〉+ κ̄1〈J̄∇̄Ē1

Ē2, Ē1〉
= ±κ̄′1 = 0,

applying Remark 2.13 (iii), we have the following result.

Proposition 2.29 ([66]). A Frenet curve γ̄ : I ⊂ R→ CPn parametrized by arc-length
with τ̄12 = ±1 is proper-biharmonic if and only if its horizontal lift γ : I ⊂ R → S2n+1

is (−4)-biharmonic, i.e. γ is a helix with κ1 = 2 and κ2 = 1.

Moreover, we can obtain the explicit parametric equations of the horizontal lifts of
a proper-biharmonic Frenet curve γ̄ : I → CPn.

Proposition 2.30 ([66]). Let γ̄ : I ⊂ R → CPn be a proper-biharmonic Frenet curve
parametrized by arc-length with τ̄12 = ±1. Then its horizontal lift γ : I ⊂ R → S2n+1

can be parametrized in the Euclidean space R2n+2 by

γ(s) =

√
2−√2

2
cos((

√
2 + 1)s)e1 −

√
2−√2

2
sin((

√
2 + 1)s)Ĵe1

+

√
2 +

√
2

2
cos((

√
2− 1)s)e3 +

√
2 +

√
2

2
sin((

√
2− 1)s)Ĵe3,

where e1 and e3 are constant unit vectors in R2n+2 with e3 orthogonal to e1 and Ĵe1.

Proof. The curve γ is a helix with the Frenet frame field {E1 = ĒH
1 , E2 = ĒH

2 , E3 = ∓ξ}
and with curvatures κ1 = κ̄1 = 2 and κ2 = 1.

From the Weingarten equation of S2n+1 in R2n+2 and Frenet equations we get

∇̂E1E1 = ∇̇E1E1 − 〈E1, E1〉γ = κ1E2 − γ,

∇̂E1∇̂E1E1 = κ1∇̂E1E2 − E1 = κ1(−κ1E1 ∓ ξ)− E1 = −(κ2
1 + 1)E1 ∓ κ1ξ
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and

∇̂E1∇̂E1∇̂E1E1 = −(κ2
1 + 1)∇̂E1E1 ∓ κ1∇̂E1ξ

= −(κ2
1 + 1)∇̂E1E1 − κ1E2

= −6γ′′ − γ.

Hence γ is a solution of the differential equation

γiv + 6γ′′ + γ = 0,

whose general solution is

γ(s) = cos(As)c1 + sin(As)c2 + cos(Bs)c3 + sin(Bs)c4,

where A,B =
√

2± 1 and {ci} are constant vectors in R2n+2.
As γ satisfies

〈γ, γ〉 = 1, 〈γ′, γ′〉 = 1, 〈γ, γ′〉 = 0, 〈γ′, γ′′〉 = 0, 〈γ′′, γ′′〉 = 1 + κ2
1 = 5,

〈γ, γ′′〉 = −1, 〈γ′, γ′′′〉 = −(1 + κ2
1) = −5, 〈γ′′, γ′′′〉 = 0,

〈γ, γ′′′〉 = 0, 〈γ′′′, γ′′′〉 = 7κ2
1 + 1 = 29,

and since, in s = 0, we have γ = c1 + c3, γ′ = Ac2 + Bc4, γ′′ = −A2c1 − B2c3,
γ′′′ = −A3c2 −B3c4, we obtain

c11 + 2c13 + c33 = 1 (2.26)

A2c22 + 2ABc24 + B2c44 = 1 (2.27)

Ac12 + Ac23 + Bc14 + Bc34 = 0 (2.28)

A3c12 + AB2c23 + A2Bc14 + B3c34 = 0 (2.29)

A4c11 + 2A2B2c13 + B4c33 = 5 (2.30)

A2c11 + (A2 + B2)c13 + B2c33 = 1 (2.31)

A4c22 + (AB3 + A3B)c24 + B4c44 = 5 (2.32)

A5c12 + A3B2c23 + A2B3c14 + B5c34 = 0 (2.33)

A3c12 + A3c23 + B3c14 + B3c34 = 0 (2.34)

A6c22 + 2A3B3c24 + B6c44 = 29 (2.35)

where cij = 〈ci, cj〉. From (2.28), (2.29), (2.33) and (2.34) it follows that

c12 = c23 = c14 = c34 = 0.

The equations (2.26), (2.30) and (2.31) give

c11 =
1−B2

A2 −B2
, c13 = 0, c33 =

A2 − 1
A2 −B2
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and, from (2.27), (2.32) and (2.35), it follows that

c22 =
1−B2

A2 −B2
, c24 = 0, c44 =

A2 − 1
A2 −B2

.

Therefore, we obtain that {ci} are orthogonal vectors in R2n+2 with |c1| = |c2| =√
1−B2

A2−B2 , |c3| = |c4| =
√

A2−1
A2−B2 .

By using that E1 = γ′ ⊥ ξ and then that ĴE2 = ±E1, we conclude.

Remark 2.31 ([66]). Under the flow-action of ξ, the (−4)-biharmonic curves γ induce
the (−4)-biharmonic surfaces obtained in Example 2.20.

2.5.2 Biharmonic curves with τ̄12 = 0

From the expression (2.25) of the bitension field of γ̄ we obtain that γ̄ is proper-
biharmonic if and only if





κ̄1 = constant > 0, κ̄2 = constant
κ̄2

1 + κ̄2
2 = 1

κ̄2κ̄3 = 0

. (2.36)

Proposition 2.32 ([66]). A Frenet curve γ̄ : I ⊂ R→ CPn parametrized by arc-length
with τ̄12 = 0 is proper-biharmonic if and only if either

(a) n = 2 and γ̄ is a circle with κ̄1 = 1,

or

(b) n ≥ 3 and γ̄ is a circle with κ̄1 = 1 or a helix with κ̄2
1 + κ̄2

2 = 1.

Proof. We only have to prove the statements concerning the dimension n.
First, since {Ē1, Ē2, J̄Ē2} are linearly independent, it follows that n > 1.
Now, assume that γ̄ is a Frenet curve of osculating order 3 such that J̄Ē2 ⊥ Ē1. We

have 



Ē1 = γ̄′

∇̄Ē1
Ē1 = κ̄1Ē2

∇̄Ē1
Ē2 = −κ̄1Ē1 + κ̄2Ē3

∇̄Ē1
Ē3 = −κ̄2Ē2

. (2.37)

It is easy to see that, at an arbitrary point, the system

S1 = {Ē1, Ē2, Ē3, J̄Ē1, J̄Ē2}

consists of non-zero vectors which are orthogonal to each other, and therefore n ≥ 3.

Next, we shall consider the horizontal lift γ : I ⊂ R → S2n+1 of a curve γ̄ :
I ⊂ R → CPn parametrized by arc-length with τ̄12 = 0. As in the previous case we
have γ′ = E1 = ĒH

1 , E2 = ĒH
2 and then ĴE2 ⊥ E1. This means Ĵ(τ(γ)) ⊥ E1, so

(Ĵ(τ(γ)))> = 0. From Theorem 2.12 we obtain the following.
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Proposition 2.33 ([66]). A Frenet curve γ̄ : I ⊂ R→ CPn parametrized by arc-length
with τ̄12 = 0 is proper-biharmonic if and only if its horizontal lift γ : I ⊂ R→ S2n+1 is
proper-biharmonic.

The parametric equations of the proper-biharmonic Frenet curves in S2n+1 with
ĴE2 ⊥ E1 were obtained in [70]. Using that result we can state the following proposition.

Proposition 2.34 ([66]). Let γ̄ : I ⊂ R → CPn be a proper-biharmonic Frenet curve
parametrized by arc-length with τ̄12 = 0. Then the horizontal lift γ : I ⊂ R→ S2n+1 can
be parametrized, in the Euclidean space R2n+2, either by

γ(s) =
1√
2

cos(
√

2s)e1 +
1√
2

sin(
√

2s)e2 +
1√
2
e3,

where {ei, Ĵej}3
i,j=1 are constant unit vectors orthogonal to each other, or by

γ(s) = 1√
2
cos(

√
1 + κ1s)e1 + 1√

2
sin(

√
1 + κ1s)e2

+ 1√
2
cos(

√
1− κ1s)e3 + 1√

2
sin(

√
1− κ1s)e4,

where κ1 ∈ (0, 1), and {ei, Ĵej}4
i,j=1 are constant unit vectors orthogonal to each other.

2.5.3 Biharmonic curves with τ̄12 different from 0, 1 or −1

Assume that γ̄ is a proper-biharmonic Frenet curve of osculating order d such that τ̄12

is different from 0, 1 or −1.
First, we shall prove that d ≥ 4.

Assume that d = 2. From the biharmonic equation τ2(γ̄) = 0 we have κ̄1 = constant > 0
and then (−κ̄3

1 + κ̄1)Ē2 − 3κ̄1τ̄12J̄Ē1 = 0. It follows that Ē2 is parallel to J̄Ē1, i.e.
τ̄2
12 = 1.
Now, if d = 3, from the biharmonic equation of γ̄, we obtain again κ̄1 = constant > 0
and then

(−κ̄2
1 − κ̄2

2 + 1)Ē2 + κ̄′2Ē3 − 3τ̄12J̄Ē1 = 0. (2.38)

Next, differentiating −τ̄12(s) = 〈Ē2, J̄Ē1〉, we obtain

−τ̄ ′12(s) = 〈∇̄Ē1
Ē2, J̄Ē1〉+ 〈Ē2, ∇̄Ē1

J̄Ē1〉 = 〈∇̄Ē1
Ē2, J̄Ē1) + 〈Ē2, κ̄1J̄Ē2)

= 〈∇̄Ē1
Ē2, J̄Ē1〉 = 〈−κ̄1Ē1 + κ̄2Ē3, J̄Ē1〉

= κ̄2〈Ē3, J̄Ē1〉.

Hence, taking the inner product with κ̄2Ē3 in (2.38), we get κ̄′2κ̄2 + 3τ̄12τ̄
′
12 = 0 and so

κ̄2
2 = −3τ̄2

12 + ω0, where ω0 = constant. Using (2.38) it results that κ̄2
1 = 1− ω0 + 6τ̄2

12.
Therefore f = constant and κ̄2 = constant. Finally, (2.38) becomes (−κ̄2

1− κ̄2
2 +1)Ē2−

3τ̄12J̄Ē1 = 0, which means that Ē2 is parallel to J̄Ē1.
We have proved the following result.

Proposition 2.35 ([66]). Let γ̄ be a proper-biharmonic Frenet curve in CPn of oscu-
lating order d, 1 ≤ d ≤ 2n, with τ̄12 different from 0, 1 or −1. Then we have d ≥ 4.



2.5. Biharmonic curves in CPn 85

Next we shall prove that for a proper-biharmonic Frenet curve in CPn, τ̄12 and κ̄1

are constants whatever the osculating order of γ̄ is.
We have seen that −τ̄ ′12(s) = κ̄2〈Ē3, J̄Ē1〉. If τ2(γ̄) = 0 we have J̄Ē1 = 〈J̄Ē1, Ē2〉Ē2 +
〈J̄Ē1, Ē3〉Ē3 + 〈J̄Ē1, Ē4〉Ē4 and





κ̄1 = constant > 0
κ̄2

1 + κ̄2
2 = 1 + 3τ̄2

12

κ̄2κ̄
′
2 = −3τ̄12τ̄

′
12

κ̄2κ̄3 = 3τ̄12〈J̄Ē1, Ē4〉

. (2.39)

From the third equation of (2.39), we get

κ̄2
2 = −3τ̄2

12 + ω0,

where ω0 = constant. Replacing in the second equation of (2.39) it follows that

κ̄2
1 = 1 + 6τ̄12 − ω0,

which implies τ̄12 = constant, and therefore, κ̄2 = constant > 0. From −τ̄ ′12(s) =
κ̄2〈Ē3, J̄Ē1〉, we have 〈J̄Ē1, Ē3〉 = 0 and then J̄Ē1 = fĒ2 + 〈J̄Ē1, Ē4〉Ē4. It follows
that there exists a unique constant α0 ∈ (0, 2π) \ {π

2 , π, 3π
2 } such that −τ̄12 = cosα0

and 〈J̄Ē1, Ē4〉 = sin α0 = κ̄2κ̄3
3τ̄12

.
We can summarise as follows.

Proposition 2.36 ([66]). A Frenet curve γ̄ : I ⊂ R → CPn, n ≥ 2, parametrized
by arc-length with τ̄12 different from 0, 1 or −1 is proper-biharmonic if and only if
J̄Ē1 = cosα0Ē2 + sinα0Ē4 and





κ̄1, κ̄2, κ̄3 = constant > 0
κ̄2

1 + κ̄2
2 = 1 + 3 cos2 α0

κ̄2κ̄3 = −3
2 sin(2α0)

τ̄12 = − cosα0

, (2.40)

where α0 ∈ (π
2 , π) ∪ (3π

2 , 2π) is a constant.

We end this section classifying the proper-biharmonic curves in CPn of osculating
order d ≤ 4. First, we prove the following proposition.

Proposition 2.37 ([66]). Let γ̄ be a proper-biharmonic Frenet curve in CPn of os-
culating order d < 4. Then γ̄ is one of the following: a holomorphic circle of curva-
ture κ̄1 = 2, a holomorphic circle of curvature κ̄1 = 1, or a holomorphic helix with
κ̄2

1 + κ̄2
2 = 1.

Proof. Let γ̄ be a proper-biharmonic Frenet curve of osculating order d < 4. Then,
from Proposition 2.35, τ̄12 = ±1 or τ̄12 = 0. If τ̄12 = ±1, from Proposition 2.28, γ̄ is a
circle of curvature κ̄1 = 2. If τ̄12 = 0 then we know that γ̄ is either a holomorphic circle
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of curvature κ̄1 = 1 or a helix. We now prove that it is a holomorphic helix. For this
we need to prove that the complex torsions τ̄13, τ̄23 are constant.

τ̄13 = 〈Ē1, J̄Ē3〉 = − 1
κ̄2
〈∇̄Ē1

Ē2, J̄Ē1〉 =
1
κ̄2
〈Ē2, ∇̄Ē1

J̄Ē1〉

=
κ̄1

κ̄2
〈Ē2, J̄Ē2〉 = 0.

Now, using that for a Frenet curve of osculating order 3 we have κ̄1τ̄23 = τ̄ ′13 + κ̄2τ̄12,
we see that also τ̄23 is constant.

When the biharmonic curve is of osculating order 4, system (2.40) has four solutions.

Proposition 2.38 ([66]). Let γ̄ be a proper-biharmonic Frenet curve in CPn of oscu-
lating order d = 4. Then γ̄ is a holomorphic helix. Moreover, depending on the value of
τ̄12 = − cosα0, we have

(a) If τ̄12 > 0, then the curvatures of γ̄ are given by




κ̄2 = sin α0√
2

√
1− 3 cos2 α0 ±

√
9 cos4 α0 − 42 cos2 α0 + 1

κ̄3 = − 3
2κ̄2

sin(2α0)
κ̄1 = − 1

sin α0
(κ̄2 cosα0 − κ̄3 sinα0)

(2.41)

and

τ̄34 = −τ̄12 = cosα0, τ̄14 = −τ̄23 = − sinα0 and τ̄13 = τ̄24 = 0,

where α0 ∈ (π
2 , arccos(−2−√3√

2
)).

(b) If τ̄12 < 0, then the curvatures of γ̄ are given by




κ̄2 = − sin α0√
2

√
1− 3 cos2 α0 ±

√
9 cos4 α0 − 42 cos2 α0 + 1

κ̄3 = − 3
2κ̄2

sin(2α0)
κ̄1 = − 1

sin α0
(κ̄2 cosα0 − κ̄3 sinα0)

(2.42)

and

τ̄34 = −τ̄12 = cosα0, τ̄14 = −τ̄23 = − sinα0 and τ̄13 = τ̄24 = 0,

where α0 ∈ (3π
2 , π + arccos(−2−√3√

2
)).

Proof. Let γ̄ be a proper-biharmonic Frenet curve in CPn of osculating order d = 4.
Then τ̄12 = − cosα0 is different from 0, 1 or −1, and J̄Ē1 = cosα0Ē2 + sinα0Ē4. Then
it results that

τ̄12 = − cosα0, τ̄13 = 0, τ̄14 = − sinα0 and τ̄24 = 0.

In order to prove that τ̄23 is constant we differentiate the expression of J̄Ē1 and using
the Frenet equations we obtain

∇̄Ē1
J̄Ē1 = cos α0∇̄Ē1

Ē2 + sinα0∇̄Ē1
Ē4

= −κ̄1 cosα0Ē1 + (κ̄2 cosα0 − κ̄3 sinα0)Ē3.
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On the other hand ∇̄Ē1
J̄Ē1 = κ̄1J̄Ē2 and therefore we have

κ̄1J̄Ē2 = −κ̄1 cosα0Ē1 + (κ̄2 cosα0 − κ̄3 sinα0)Ē3. (2.43)

We take the inner product of (2.43) with Ē3, J̄Ē2 and J̄Ē4, respectively, and we get

κ̄1τ̄23 = −(κ̄2 cosα0 − κ̄3 sinα0), (2.44)

κ̄1 sin2 α0 = −(κ̄2 cosα0 − κ̄3 sinα0)τ̄23, (2.45)

0 = κ̄1 cosα0 sinα0 + (κ̄2 cosα0 − κ̄3 sinα0)τ̄34. (2.46)

From (2.44) and (2.45) we obtain

κ̄2
1 sin2 α0 = (κ̄2 cosα0 − κ̄3 sinα0)2 (2.47)

and τ2
23 = sin2 α0. From τ2

23 = sin2 α0, (2.44) and α0 ∈ (π
2 , π) ∪ (3π

2 , 2π), one obtains

τ̄23 = sinα0.

From τ̄23 = sin α0, (2.44) and (2.46) we get

τ̄34 = cosα0.

Finally, from Proposition 2.36 and (2.47) we obtain

κ̄4
2 + κ̄2

2 sin2 α0(3 cos2 α0 − 1) + 9 sin4 α0 cos2 α0 = 0.

The latter equation has either the solutions

κ̄2 =
sinα0√

2

√
1− 3 cos2 α0 ±

√
9 cos4 α0 − 42 cos2 α0 + 1

provided that α0 ∈ (π
2 , arccos(−2−√3√

2
)), or the solutions

κ̄2 = −sinα0√
2

√
1− 3 cos2 α0 ±

√
9 cos4 α0 − 42 cos2 α0 + 1

provided that α0 ∈ (3π
2 , π + arccos(−2−√3√

2
)). Note that in both cases κ̄2

2 ∈ (0, 4), thus
all solutions for κ̄2 are compatible with κ̄2

1 + κ̄2
2 = 1 + 3 cos2 α0.

Corollary 2.39 ([66]). Any proper-biharmonic Frenet curve in CP 2 is a holomorphic
circle or a holomorphic helix of order 4.

Remark 2.40 ([66]). The existence of biharmonic curves of osculating order d ≥ 4 is
an open problem (the case d = 4 and n = 2 will be solved in the next section). We note
that there is no curve (not necessarily biharmonic) of order d = 5 in CPn such that
J̄Ē1 = cosα0Ē2 + sinα0Ē4, where α0 ∈ (0, 2π) \ {π}.
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2.6 Biharmonic curves in CP 2

In this section we give the complete classification of all proper-biharmonic Frenet curves
in CP 2. From the previous section, we only have to classify the proper-biharmonic
Frenet curves of osculating order 4.

In the proof of Proposition 2.38 we have seen that

τ̄34 = −τ̄12 = cosα0, τ̄14 = −τ̄23 = − sinα0 and τ̄13 = τ̄24 = 0,

and
κ̄1 sinα0 = −(κ̄2 cosα0 − κ̄3 sinα0),

which implies that κ̄1 − κ̄3 = −κ̄2
cos α0
sin α0

> 0.

Moreover, if α0 ∈ (π
2 , arccos(−2−√3√

2
)), then

κ̄1 − κ̄3√
κ̄2

2 + (κ̄1 − κ̄3)2
= − cosα0 = τ̄12,

κ̄2√
κ̄2

2 + (κ̄1 − κ̄3)2
= sin α0 = τ̄23,

and, if α0 ∈ (3π
2 , π + arccos(−2−√3√

2
)), then

κ̄1 − κ̄3√
κ̄2

2 + (κ̄1 − κ̄3)2
= cosα0 = −τ̄12,

κ̄2√
κ̄2

2 + (κ̄1 − κ̄3)2
= − sinα0 = −τ̄23.

In order to conclude, we briefly recall a result of S. Maeda and T. Adachi.
In [91], they showed that for given positive constants κ̄1, κ̄2 and κ̄3, there exist four
equivalence classes of holomorphic helices of order 4 in CP 2 with curvatures κ̄1, κ̄2 and
κ̄3 with respect to holomorphic isometries of CP 2. The four classes are defined by
certain relations on the complex torsions and they are: when κ̄1 6= κ̄3

κ̄1 6= κ̄3

I1 τ̄12 = τ̄34 = µ τ̄23 = τ̄14 = κ̄2µ/(κ̄1 + κ̄3) τ̄13 = τ̄24 = 0
I2 τ̄12 = τ̄34 = −µ τ̄23 = τ̄14 = −κ̄2µ/(κ̄1 + κ̄3) τ̄13 = τ̄24 = 0
I3 τ̄12 = −τ̄34 = ν τ̄23 = −τ̄14 = κ̄2ν/(κ̄1 − κ̄3) τ̄13 = τ̄24 = 0
I4 τ̄12 = −τ̄34 = −ν τ̄23 = −τ̄14 = −κ̄2ν/(κ̄1 − κ̄3) τ̄13 = τ̄24 = 0

where 



µ =
κ̄1 + κ̄3√

κ̄2
2 + (κ̄1 + κ̄3)2

ν =
κ̄1 − κ̄3√

κ̄2
2 + (κ̄1 − κ̄3)2

,

and when κ̄1 = κ̄3 the classes I3 and I4 are substituted by

κ̄1 = κ̄3

I ′3 τ̄12 = τ̄34 = τ̄13 = τ̄24 = 0 τ̄23 = −τ̄14 = 1
I ′4 τ̄12 = τ̄34 = τ̄13 = τ̄24 = 0 τ̄23 = −τ̄14 = −1

Using Maeda-Adachi classification, we can conclude.
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Theorem 2.41 ([66]). Let γ̄ be a proper-biharmonic Frenet curve in CP 2 of osculating
order 4. Then γ̄ is a holomorphic helix of order 4 of class I3 or I4 according to the
following table

I3 if τ̄12 < 0 and τ̄23 < 0
I4 if τ̄12 > 0 and τ̄23 > 0

Conversely,

(a) For any α0 ∈ (π
2 , arccos(−2−√3√

2
)) there exist two proper-biharmonic holomorphic

helices of order 4 of class I3 with




κ̄2 = sin α0√
2

√
1− 3 cos2 α0 ±

√
9 cos4 α0 − 42 cos2 α0 + 1

κ̄3 = − 3
2κ̄2

sin(2α0)
κ̄1 = − 1

sin α0
(κ̄2 cosα0 − κ̄3 sinα0)

. (2.48)

(b) For any α0 ∈ (3π
2 , π+arccos(−2−√3√

2
)) there exist two proper-biharmonic holomor-

phic helices of order 4 of class I4 with




κ̄2 = − sin α0√
2

√
1− 3 cos2 α0 ±

√
9 cos4 α0 − 42 cos2 α0 + 1

κ̄3 = − 3
2κ̄2

sin(2α0)
κ̄1 = − 1

sin α0
(κ̄2 cosα0 − κ̄3 sinα0)

. (2.49)





Chapter 3
Biharmonic submanifolds in
Sasakian space forms

The present chapter, divided in three sections, is dedicated to the study of biharmonic
submanifolds in Sasakian space forms.

3.1 Explicit formulas for biharmonic submanifolds in Sasakian
space forms

3.1.1 Introduction

At the beginning of the first section we classify all proper-biharmonic Legendre curves
in any dimensional Sasakian space forms. Because of the complexity of the biharmonic
equation, we had to do a case by case analysis and the classification is given by Theorems
3.4, 3.7, 3.8 and 3.10. As a by-product we prove that in a 5-dimensional Sasakian
space form all proper-biharmonic curves are helices (Theorem 3.13). Then, we consider
the unit (2n + 1)-dimensional Euclidian sphere S2n+1 endowed with the canonical and
deformed Sasakian structures defined by S. Tanno as a model for the Sasakian space
forms, and obtain the explicit parametric equations of proper-biharmonic Legendre
curves (Theorems 3.17, 3.19 and 3.20).

In the second part of the first section we prove that, by composing with the flow
of the characteristic vector field of a Sasakian space form, we can render a proper-
biharmonic integral submanifold onto a proper-biharmonic anti-invariant submanifold
(Theorem 3.22). This result allows us to obtain all proper-biharmonic surfaces which
are invariant under the flow-action of the characteristic vector field (Theorem 3.24).

3.1.2 Preliminaries

In this section we briefly recall basic things from the theory of Sasakian manifolds (for
example see [26]) which we shall use throughout the paper.
A contact metric structure on an odd-dimensional manifold N2n+1 is given by (ϕ, ξ, η, g),
where ϕ is a tensor field of type (1, 1) on N , ξ is a vector field, η is an 1-form and g is

91
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a Riemannian metric such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1

and

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = dη(X, Y ), ∀X, Y ∈ C(TN).

A contact metric manifold (N,ϕ, ξ, η, g) is called Sasakian if it is normal, i.e.

Nϕ + 2dη ⊗ ξ = 0,

where

Nϕ(X,Y ) = [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X, ϕY ] + ϕ2[X,Y ], ∀X, Y ∈ C(TN),

is the Nijenhuis tensor field of ϕ, or, equivalently, if

(∇Xϕ)(Y ) = g(X,Y )ξ − η(Y )X, ∀X,Y ∈ C(TN).

We note that from the above formula it follows ∇Xξ = −ϕX.
The contact distribution of a Sasakian manifold (N,ϕ, ξ, η, g) is defined by {X ∈

TN : η(X) = 0}. We say that a submanifold M of N is an integral submanifold if
η(X) = 0 for any vector X tangent to M ; in particular, an integral curve is called a
Legendre curve. The maximum dimension for an integral submanifold of N2n+1 is n.
Moreover, for m = n, one gets ϕ(NM) = TM . If we denote by B the second funda-
mental form of M then, by a straightforward computation, one obtains the following
relation which we shall use later in this chapter

g(B(X, Y ), ϕZ) = g(B(X, Z), ϕY ),

for any vector fields X, Y and Z tangent to M (see also [10], [130]).
A submanifold M̃ of N which is tangent to ξ is said to be anti-invariant if ϕ maps

any vector tangent to M̃ and normal to ξ to a vector normal to M̃ .
Let (N, ϕ, ξ, η, g) be a Sasakian manifold. The sectional curvature of a 2-plane

generated by X and ϕX, where X is an unit vector orthogonal to ξ, is called the ϕ-
sectional curvature determined by X. If the ϕ-sectional curvature is a constant c, then
(N,ϕ, ξ, η, g) is called a Sasakian space form and it is denoted by N(c).
The curvature tensor field of a Sasakian space form N(c) is given by

R(X,Y )Z = c+3
4 {g(Z, Y )X − g(Z, X)Y }+ c−1

4 {η(Z)η(X)Y−

−η(Z)η(Y )X + g(Z,X)η(Y )ξ − g(Z, Y )η(X)ξ+

+g(Z,ϕY )ϕX − g(Z,ϕX)ϕY + 2g(X, ϕY )ϕZ}.

(3.1)

The classification of complete, simply connected Sasakian space forms N(c) was given
in [125]. When c > −3, N(c) is isometric to the unit sphere S2n+1 endowed with the
Sasakian structure defined by S. Tanno. This structure is given as follows (see [126]).
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Let S2n+1 = {z ∈ Cn+1 : |z| = 1} be the unit (2n+1)-dimensional Euclidean sphere.
Consider the following structure tensor fields on S2n+1: the standard metric field g0, the
vector field ξ0(z) = −J z, z ∈ S2n+1, where J is the usual almost complex structure on
Cn+1 defined by

J z = (−y1, ...,−yn+1, x1, ..., xn+1),

for z = (x1, ..., xn+1, y1, ..., yn+1), and ϕ0 = s ◦J , where s : TzCn+1 → TzS2n+1 denotes
the orthogonal projection. Equipped with these tensors, S2n+1 becomes a Sasakian
space form with the ϕ0-sectional curvature equal to 1, denoted by S2n+1(1).
Now, consider the deformed structure on S2n+1

η = aη0, ξ =
1
a
ξ0, ϕ = ϕ0, g = ag0 + a(a− 1)η0 ⊗ η0,

where a is a positive constant. The structure (ϕ, ξ, η, g) is still a Sasakian structure and
(S2n+1, ϕ, ξ, η, g) is a Sasakian space form with constant ϕ-sectional curvature c = 4

a−3,
c > −3, denoted by S2n+1(c).

If Mm, with m ≤ n, is a submanifold of the sphere S2n+1 then M is integral with
respect to its canonical Sasakian structure (ϕ0, ξ0, η0, g0) if and only if it is integral with
respect to the deformed one (ϕ, ξ, η, g), since η0(X) = 0 if and only if η(X) = 0 for
any vector field X tangent to M . Moreover, if M is an integral submanifold of S2n+1

then the normal bundle of M in (S2n+1, g0) coincides with the normal bundle of M in
(S2n+1, g), since for any X ∈ TpM and Y ∈ TpS2n+1, where p is an arbitrary point in
M , we have g0(X, Y ) = 0 if and only if g(X, Y ) = 0.

Next, we consider M to be an integral submanifold of S2n+1, and denote by gM
0 and

gM the induced metrics on M by g0 and g, respectively. Denote by ∇̇M and ∇M their
Levi-Civita connections. Then the identity map 1 : (M, gM

0 ) → (M, gM ) is a homothety
and therefore ∇̇M = ∇M .

The following Lemma holds.

Lemma 3.1. Let M be an integral submanifold of S2n+1. If X and Y are vector fields
tangent to M then

∇̇XY = ∇XY and ∇̇XϕY = ∇XϕY,

where ∇̇ and ∇ are the Levi-Civita connections on (S2n+1, g0) and (S2n+1, g), respec-
tively.

Proof. From the definition of the metric g we have, for any vector fields X, Y tangent
to M and Z tangent to S2n+1,

g(∇XY,Z) = ag0(∇XY, Z) + a(a− 1)η0(∇XY )η0(Z).

But, since M is integral,

η0(∇XY ) =
1
a
η(∇XY ) =

1
a
g(∇XY, ξ) = −1

a
g(Y,∇Xξ) =

1
a
g(Y, ϕX) = 0,

and so
g(∇XY, Z) = ag0(∇XY,Z).



94 Chapter 3. Biharmonic submanifolds in Sasakian space forms

On the other hand, applying the characterization of the Levi-Civita connection for ∇
and ∇̇, we obtain

g(∇XY, Z) = ag0(∇̇XY, Z).

From the last two relations we get

g0(∇XY,Z) = g0(∇̇XY,Z)

and therefore ∇̇XY = ∇XY for any vector fields X and Y tangent to M .
For the second relation, we use (∇Xϕ)Y = g(X, Y )ξ − η(Y )X and (∇̇Xϕ)Y =

g0(X, Y )ξ0− η0(Y )X for vector fields X and Y tangent to M , and come to the conclu-
sion.

We end this subsection recalling that a contact metric manifold (N, ϕ, ξ, η, g) is
regular if for any point p ∈ N there exists a cubic neighborhood such that any integral
curve of ξ passes through it at most once; and it is strictly regular if all integral curves
of ξ are homeomorphic to each other.
Let (N,ϕ, ξ, η, g) be a regular contact metric manifold. Then the orbit space N̄ = N/ξ
has a natural manifold structure and, moreover, if N is compact then N is a principal
circle bundle over N̄ (the Boothby-Wang Theorem). In this case the fibration π : N →
N̄ is called the Boothby-Wang fibration. The Hopf fibration π : S2n+1(1) → CPn(4) is
a well-known example of a Boothby-Wang fibration.

Theorem 3.2 ([106]). Let (N,ϕ, ξ, η, g) be a strictly regular Sasakian manifold. Then
on N̄ can be given the structure of a Kähler manifold. Moreover, if (N, ϕ, ξ, η, g) is a
Sasakian space form N(c), then N̄ has constant sectional holomorphic curvature c + 3.

Even if N is non-compact, we still call the fibration π : N → N̄ of a strictly regular
Sasakian manifold, the Boothby-Wang fibration.

We end with the following classification result.

Theorem 3.3 ([135]). A simply connected complete Kähler manifold of constant holo-
morphic sectional curvature c can be identified with the complex projective space CPn,
the open unit ball Dn in Cn, or Cn, according as c > 0, c < 0, or c = 0.

3.1.3 Biharmonic Legendre curves in Sasakian space forms

We shall work with Frenet curves of osculating order r, parametrized by arc-length.
For such a curve γ : I → N we shall denote by {E1 = γ′ = T,E2, . . . , Er} the Frenet
frame field along it, and by κ1, . . . , κr−1 the corresponding curvatures which are positive
functions on I.

Let (N2n+1, ϕ, ξ, η, g) be a Sasakian space form with constant ϕ-sectional curvature
c and γ : I → N a Legendre Frenet curve of osculating order r. Since

∇3
T T = (−3κ1κ

′
1)E1 + (κ′′1 − κ3

1 − κ1κ
2
2)E2 + (2κ′1κ2 + κ1κ

′
2)E3

+κ1κ2κ3E4

and
R(T,∇T T )T = −(c + 3)κ1

4
E2 − 3(c− 1)κ1

4
g(E2, ϕT )ϕT,
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we obtain the expression of the bitension vector field

τ2(γ) = ∇3
T T −R(T,∇T T )T

= (−3κ1κ
′
1)E1 +

(
κ′′1 − κ3

1 − κ1κ
2
2 + (c+3)κ1

4

)
E2

+(2κ′1κ2 + κ1κ
′
2)E3 + κ1κ2κ3E4 + 3(c−1)κ1

4 g(E2, ϕT )ϕT.

(3.2)

In the following we shall solve the biharmonic equation τ2(γ) = 0. Because of the last
term of τ2(γ) we must do a case by case analysis.
Case I: c = 1.
In this case, from (3.2), it follows that γ is proper-biharmonic if and only if





κ1 = constant > 0, κ2 = constant

κ2
1 + κ2

2 = 1

κ2κ3 = 0

.

One obtains the following.

Theorem 3.4 ([70]). Let N2n+1(1) be a Sasakian space form and γ : I → N a Legendre
Frenet curve of osculating order r. Then γ is proper-biharmonic if and only if n ≥ 2
and either γ is a circle with κ1 = 1, or γ a helix with κ2

1 + κ2
2 = 1.

Remark 3.5 ([70]). If n = 1 and γ is a non-geodesic Legendre curve we have ∇T T =
±κ1ϕT and then E2 = ±ϕT and∇T E2 = ±∇T ϕT = ±(ξ∓κ1T ) = −κ1T±ξ. Therefore
κ2 = 1 and γ cannot be biharmonic.

Case II: c 6= 1, E2 ⊥ ϕT.
From (3.2) we obtain that γ is proper-biharmonic if and only if





κ1 = constant > 0, κ2 = constant

κ2
1 + κ2

2 = c+3
4

κ2κ3 = 0

.

Before stating the theorem we need the following lemma which imposes a restriction on
the dimension of the manifold N2n+1(c).

Lemma 3.6 ([70]). Let γ be a Legendre Frenet curve of osculating order 3 such that
E2 ⊥ ϕT . Then {T = E1, E2, E3, ϕT, ξ,∇T ϕT} is linearly independent, in any point,
and hence n ≥ 3.

Proof. Since γ is a Frenet curve of osculating order 3, we have




E1 = γ′ = T

∇T E1 = κ1E2

∇T E2 = −κ1E1 + κ2E3

∇T E3 = −κ2E2

.
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It is easy to see that, in an arbitrary point, the system

S1 = {T = E1, E2, E3, ϕT, ξ,∇T ϕT}
has only non-zero vectors and

T ⊥ E2, T ⊥ E3, T ⊥ ϕT, T ⊥ ξ, T ⊥ ∇T ϕT.

Thus S1 is linearly independent if and only if S2 = {E2, E3, ϕT, ξ,∇T ϕT} is linearly
independent. Further, as

E2 ⊥ ξ, E2 ⊥ ∇T ϕT, E3 ⊥ ξ, E3 ⊥ ∇T ϕT, ϕT ⊥ ξ, ϕT ⊥ ∇T ϕT,

and
E2 ⊥ E3 ⊥ ϕT,

it follows that S2 is linearly independent if and only if S3 = {ξ,∇T ϕT} is linearly
independent. But ∇T ϕT = ξ+κ1ϕE2, κ1 6= 0, and therefore S3 is linearly independent.

Now we can state the result.

Theorem 3.7 ([70]). Let N2n+1(c) be a Sasakian space form with c 6= 1 and γ : I → N
a Legendre Frenet curve of osculating order r such that E2 ⊥ ϕT . We have
1) If c ≤ −3 then γ is biharmonic if and only if it is a geodesic.
2) If c > −3 then γ is proper-biharmonic if and only if either

a) n ≥ 2 and γ is a circle with κ2
1 = c+3

4 . In this case {E1, E2, ϕT, ξ} are linearly
independent,

or
b) n ≥ 3 and γ is a helix with κ2

1 +κ2
2 = c+3

4 . In this case {E1, E2, E3, ϕT, ξ,∇T ϕT}
are linearly independent.

Case III: c 6= 1, E2 ‖ ϕT.
In this case, from (3.2), γ is proper-biharmonic if and only if





κ1 = constant > 0, κ2 = constant

κ2
1 + κ2

2 = c

κ2κ3 = 0

.

We can assume that E2 = ϕT . Then we have ∇T T = κ1E2 = κ1ϕT , ∇T E2 = ∇T ϕT =
ξ − κ1T . That means E3 = ξ and κ2 = 1. Hence ∇T E3 = ∇T ξ = −ϕT = −E2.
Therefore, we obtain the following result.

Theorem 3.8 ([70]). Let N2n+1(c) be a Sasakian space form with c 6= 1 and γ : I → N
a Legendre Frenet curve of osculating order r such that E2 ‖ ϕT . Then {T, ϕT, ξ} is
the Frenet frame field of γ and we have

1) If c < 1 then γ is biharmonic if and only if it is a geodesic.
2) If c > 1 then γ is proper-biharmonic if and only if it is a helix with κ2

1 = c − 1
(and κ2 = 1).
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Remark 3.9. If n = 1, for any Legendre curve E2 ‖ ϕT , and we reobtain Inoguchi’s
result in [79].

Case IV: c 6= 1 and g(E2, ϕT) is not constant 0,1 or −1.
Assume that γ is a proper-biharmonic Legendre Frenet curve of osculating order r
such that g(E2, ϕT ) is not constant 0, 1 or −1. One can check that, in this case,
4 ≤ r ≤ 2n + 1, n ≥ 2, and ϕT ∈ span{E2, E3, E4}.

Now, we denote f(s) = g(E2, ϕT ) and differentiating it we obtain

f ′(s) = g(∇T E2, ϕT ) + g(E2,∇T ϕT ) = g(∇T E2, ϕT ) + g(E2, ξ + κ1ϕE2)

= g(∇T E2, ϕT ) = g(−κ1T + κ2E3, ϕT )

= κ2g(E3, ϕT ).

Since ϕT = g(ϕT, E2)E2+g(ϕT,E3)E3+g(ϕT,E4)E4, the curve γ is proper-biharmonic
if and only if 




κ1 = constant > 0

κ2
1 + κ2

2 = c+3
4 + 3(c−1)

4 f2

κ′2 = −3(c−1)
4 fg(ϕT, E3)

κ2κ3 = −3(c−1)
4 fg(ϕT, E4)

.

Using the expression of f ′(s) we see that the third equation of the above system is
equivalent to

κ2
2 = −3(c− 1)

4
f2 + ω0,

where ω0 = constant. Replacing in the second equation it follows

κ2
1 =

c + 3
4

− ω0 +
3(c− 1)

2
f2,

which implies f = constant. Thus κ2 = constant > 0, g(E3, ϕT ) = 0 and then ϕT =
fE2 + g(ϕT, E4)E4. It follows that there exists an unique constant α0 ∈ (0, 2π) \
{π

2 , π, 3π
2 } such that f = cosα0 and g(ϕT,E4) = sinα0.

We can state the result.

Theorem 3.10 ([70]). Let N2n+1(c) be a Sasakian space form with c 6= 1, n ≥ 2, and
γ : I → N a Legendre Frenet curve of osculating order r such that g(E2, ϕT ) is not
constant 0, 1 or −1. We have

1) If c ≤ −3 then γ is biharmonic if and only if it is a geodesic.
2) If c > −3 then γ is proper-biharmonic if and only if r ≥ 4, ϕT = cos α0E2 +

sinα0E4 and 



κ1, κ2, κ3 = constant > 0

κ2
1 + κ2

2 = c+3
4 + 3(c−1)

4 cos2 α0

κ2κ3 = −3(c−1)
8 sin(2α0)

,
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where α0 ∈ (0, 2π) \ {π
2 , π, 3π

2 } is a constant such that c + 3 + 3(c− 1) cos2 α0 > 0 and
3(c− 1) sin(2α0) < 0.

Remark 3.11 ([70]). In this case we may obtain biharmonic curves which are not
helices.

Proposition 3.12 ([70]). Assume that c > −3, c 6= 1, and n = 2. Let γ be a proper-
biharmonic Legendre Frenet curve of osculating order r, such that g(E2, ϕT ) is not
constant 0,-1, or 1. Then γ is a helix of order 4 or 5.

Proof. We know that r ∈ {4, 5}. If r = 4, then the result is obvious from Theorem 3.10.
Assume now r = 5. Since ϕT = cos α0E2 + sinα0E4, and ξ ⊥ ϕT , ξ ⊥ E2, we get
ξ ⊥ E4, and then, along γ, ξ ∈ span{E3, E5}.
From the Frenet equations of γ it follows that

g(∇T E3, ξ) = g(−κ2E2 + κ3E4, ξ) = 0

and
g(∇T E5, ξ) = g(−κ4E4, ξ) = 0.

Then, since ∇g = 0, we obtain (g(E3, ξ))′ = 0 and (g(E5, ξ))′ = 0, i.e. a = g(E3, ξ) =
constant and b = g(E5, ξ) = constant.
Now, we have

g(∇T E4, ξ) = −κ3g(E3, ξ) + κ4g(E5, ξ) = −κ3a + κ4b

and, since g(∇T E4, ξ) = g(E4, ϕT ) = sinα0, we get

sinα0 = −κ3a + κ4b (3.3)

which implies that b = 0 or κ4 = constant.
Case b = 0. Since ξ ∈ span{E3, E5}, we have E3 = ±ξ and therefore

∇T E3 = ∓ϕT = ∓ cosα0E2 ∓ sinα0E4.

From the third Frenet equation, κ2 = ± cosα0, κ3 = ∓ sinα0, and then, from Theo-
rem 3.10, κ2κ3 = −1

2 sin(2α0) = −3(c−1)
8 sin(2α0). Thus, we have c = 7

3 and, again
using Theorem 3.10, κ1 = 2√

3
.

We shall prove now κ4 = κ1, so γ is a helix of order 5. From the last Frenet equation,
we obtain

g(∇T E5, ϕT ) = −κ4g(E4, ϕT ) = −κ4 sinα0. (3.4)

Since g(E5, ϕT ) = 0 we have g(∇T E5, ϕT ) + g(E5,∇T ϕT ) = 0. We can check that
g(E5,∇T ϕT ) = κ1g(E5, ϕE2), therefore, using (3.4), we get

κ1g(E5, ϕE2) = κ4 sinα0. (3.5)

Next, from the fourth Frenet equation and (3.5),

g(∇T E4, ϕE2) = κ4g(E5, ϕE2) =
κ2

4

κ1
sinα0. (3.6)
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Since ϕT = cosα0E2 + sin α0E4 it results that g(E4, ϕE2) = 0. It follows

g(∇T E4, ϕE2) = −g(E4,∇T ϕE2)

= −g(E4, ϕ∇T E2) = κ1g(E4, ϕT )

= κ1 sinα0.

(3.7)

From (3.6) and (3.7) we obtain κ4 = κ1 = 2√
3
.

Case b 6= 0. Of course, due to (3.3) κ4 = constant and so γ is a helix. Moreover, we
can obtain an additional relation between the curvatures.
Indeed, since ξ ∈ span{E3, E5} it follows a2 + b2 = 1. On the other hand

g(∇T E2, ξ) = g(E2, ϕT ) = cosα0

= g(−κ1T + κ2E3, ξ) = κ2a

and as −κ3a + κ4b = sin α0, replacing in a2 + b2 = 1 we get

(κ2 sinα0 + κ3 cosα0)2 + κ2
4(cosα0)2 = κ2

2κ
2
4.

From Theorems 3.4, 3.7, 3.8 and the above Proposition we conclude.

Theorem 3.13 ([70]). Let γ be a proper-biharmonic Legendre curve in N5(c). Then
c > −3 and γ is a helix of order r with 2 ≤ r ≤ 5.

In the following, we shall choose the unit (2n + 1)-dimensional sphere S2n+1 with
its canonical and deformed Sasakian structures as a model for the complete, simply
connected Sasakian space form with constant ϕ-sectional curvature c > −3, and we
shall find the explicit equations of biharmonic Legendre curves obtained in the first
three cases, viewed as curves in R2n+2.

In [92] are introduced the complex torsions for a Frenet curve in a complex manifold.
In the same way, for γ : I → N a Legendre Frenet curve of osculating order r in
a Sasakian manifold (N2n+1, ϕ, ξ, η, g), we define the ϕ-torsions τij = g(Ei, ϕEj) =
−g(ϕEi, Ej), i, j = 1, . . . , r, i < j.

It is easy to see that the following holds.

Proposition 3.14. Let γ : I → N(c) be a proper-biharmonic Legendre Frenet curve in
a Sasakian space form N(c), c 6= 1. Then c > −3 and τ12 is constant.

Moreover, we prove the following result.

Proposition 3.15. If γ is a proper-biharmonic Legendre Frenet curve in a Sasakian
space form N(c), c > −3, c 6= 1, of osculating order r < 4, then it is a circle or a helix
with constant ϕ-torsions.
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Proof. From Theorems 3.7, 3.8 and 3.10 we see that if γ is a proper-biharmonic Legendre
Frenet curve of osculating order r < 4, then τ12 = 0 or τ12 = ±1 and, obviously, we
only have to prove that when γ is a helix then τ13 and τ23 are constants.

Indeed, by using the Frenet equations of γ, we have

τ13 = g(E1, ϕE3) = − 1
κ2

g(ϕE1,∇E1E2 + κ1E1) = − 1
κ2

g(ϕE1,∇E1E2)

=
1
κ2

g(E2,∇E1ϕE1) =
1
κ2

g(E2, ϕ∇E1E1 + ξ) = 0

since
g(E2, ξ) =

1
κ1

g(∇E1E1, ξ) = − 1
κ1

g(E1,∇E1ξ) =
1
κ1

g(E1, ϕE1) = 0.

On the other hand, it is easy to see that for any Frenet curve of osculating order 3
we have τ23 = 1

κ1
(τ ′13 + κ2τ12 + η(E3)) and

η(E3) = g(E3, ξ) =
1
κ2

(
g(∇E1E2, ξ) + κ1g(E1, ξ)

)
= − 1

κ2
g(E2,∇E1ξ)

= − 1
κ2

τ12.

In conclusion, τ23 = 1
κ1

(τ ′13 + κ2τ12 − 1
κ2

τ12) = constant.

Proposition 3.16. If γ is a proper-biharmonic Legendre Frenet curve in a Sasakian
space form N(c) of osculating order r = 4, then c ∈ (7

3 , 5) and the curvatures of γ are

κ1 =
√

c + 3
2

, κ2 =
1
2

√
6(c− 1)(5− c)

c + 3
, κ3 =

1
2

√
3(c− 1)(3c− 7)

c + 3
.

Moreover, the ϕ-torsions of γ are given by




τ12 = ∓
√

2(5−c)
c+3 , τ13 = 0, τ14 = ±

√
3c−7
c+3 ,

τ23 = ∓ 3c−7√
3(c−1)(c+3)

, τ24 = 0, τ34 = ±
√

2(5−c)(3c−7)
3(c−1)(c+3) .

Proof. Let γ be a proper-biharmonic Legendre Frenet curve in N(c) of osculating order
r = 4. Then c 6= 1 and τ12 is different from 0, 1 or −1. From Theorem 3.10 we have
ϕE1 = cosα0E2 + sin α0E4. It results that

τ12 = − cosα0, τ13 = 0, τ14 = − sinα0, and τ24 = 0.

In order to prove that τ23 is constant we differentiate the expression of ϕE1 along γ and
using the Frenet equations we obtain

∇E1ϕE1 = cos α0∇E1E2 + sinα0∇E1E4

= −κ1 cosα0E1 + (κ2 cosα0 − κ3 sinα0)E3.
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On the other hand, ∇E1ϕE1 = κ1ϕE2 + ξ and therefore we have

κ1ϕE2 + ξ = −κ1 cosα0E1 + (κ2 cosα0 − κ3 sinα0)E3. (3.8)

We take the scalar product in (3.8) with ξ and obtain

(κ2 cosα0 − κ3 sinα0)η(E3) = 1. (3.9)

In the same way as in the proof of Proposition 3.34 we get

η(E3) = g(E3, ξ) =
1
κ2

(
g(∇E1E2, ξ) + κ1g(E1, ξ)

)
= − 1

κ2
g(E2,∇E1ξ)

= − 1
κ2

τ12 =
cosα0

κ2

and then, from (3.9),
κ2 sinα0 = −κ3 cosα0.

Therefore α0 ∈ (π
2 , π) ∪ (3π

2 , 2π).
Next, from Theorem 3.10, we have

κ2
1 =

c + 3
4

, κ2
2 =

3(c− 1)
4

cos2 α0, κ2
3 =

3(c− 1)
4

sin2 α0,

and so c must be greater than 1.
Now, we take the scalar product in (3.8) with E3, ϕE2 and ϕE4, respectively, and

we get
κ1τ23 = −(κ2 cosα0 − κ3 sinα0) + η(E3) = − κ2

cosα0
+

cosα0

κ2
(3.10)

κ1 sin2 α0 = −(κ2 cosα0 − κ3 sinα0)τ23 = − κ2

cosα0
τ23 (3.11)

0 = κ1 cosα0 sinα0 + (κ2 cosα0 − κ3 sinα0)τ34 = κ1 cosα0 sinα0 +
κ2

cosα0
τ34. (3.12)

and then, equations (3.10) and (3.11) lead to

κ2
1 sin2 α0 =

κ2
2

cos2 α0
− 1.

We come to the conclusion sin2 α0 = 3c−7
c+3 , so c ∈ (7

3 , 5), and then we obtain the
expressions of the curvatures and the ϕ-torsions.

Theorem 3.17 ([70]). Let γ : I → S2n+1(1), n ≥ 2, be a proper-biharmonic Legendre
curve parametrized by arc-length. Then the equation of γ in the Euclidean space R2n+2,
is either

γ(s) =
1√
2

cos
(√

2s
)
e1 +

1√
2

sin
(√

2s
)
e2 +

1√
2
e3

where {ei,J ej}3
i,j=1 are constant unit vectors orthogonal to each other, or

γ(s) =
1√
2

cos(As)e1 +
1√
2

sin(As)e2 +
1√
2

cos(Bs)e3 +
1√
2

sin(Bs)e4,
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where
A =

√
1 + κ1, B =

√
1− κ1, κ1 ∈ (0, 1), (3.13)

and {ei}4
i=1 are constant unit vectors orthogonal to each other, satisfying

〈e1,J e3〉 = 〈e1,J e4〉 = 〈e2,J e3〉 = 〈e2,J e4〉 = 0, A〈e1,J e2〉+ B〈e3,J e4〉 = 0.

Proof. Let us denote by ∇̇ and by ∇̃ the Levi-Civita connections on (S2n+1, g0) and
(R2n+2, 〈, 〉), respectively.

First, assume that γ is the biharmonic circle, that is κ1 = 1. From the Gauss and
Frenet equations we get

∇̃T T = ∇̇T T − 〈T, T 〉γ = κ1E2 − γ

and
∇̃T ∇̃T T = (−κ2

1 − 1)T = −2T,

which implies
γ
′′′

+ 2γ′ = 0.

The general solution of the above equation is

γ(s) = cos
(√

2s
)
c1 + sin

(√
2s

)
c2 + c3,

where {ci} are constant vectors in R2n+2.
Now, as γ satisfies

〈γ, γ〉 = 1, 〈γ′, γ′〉 = 1, 〈γ, γ′〉 = 0, 〈γ′, γ′′〉 = 0, 〈γ′′, γ′′〉 = 2, 〈γ, γ′′〉 = −1,

and since in s = 0 we have γ = c1 + c3, γ′ =
√

2c2, γ′′ = −2c1, we obtain

c11 + 2c13 + c33 = 1, c22 =
1
2
, c12 + c23 = 0, c12 = 0, c11 =

1
2
, c11 + c13 =

1
2
,

where cij denotes 〈ci, cj〉. The above relations imply that {ci} are orthogonal vectors
in R2n+2 with |c1| = |c2| = |c3| = 1√

2
.

Finally, using the fact that γ is a Legendre curve one obtains easily that 〈ci,J cj〉 = 0
for any i, j = 1, 2, 3. If we denote ei =

√
2ci we obtain the first part of the Theorem.

Suppose now γ is the biharmonic helix, that is κ2
1 + κ2

2 = 1, κ1 ∈ (0, 1). From the
Gauss and Frenet equations we get

∇̃T T = ∇̇T T − 〈T, T 〉γ = κ1E2 − γ,

∇̃T ∇̃T T = κ1∇̃T E2 − T = κ1

(
− κ1T + κ2E3

)
− T = −

(
κ2

1 + 1
)
T + κ1κ2E3

and

∇̃T ∇̃T ∇̃T T = −
(
κ2

1 +1
)
∇̃T T +κ1κ2∇̃T E3 = −

(
κ2

1 +1
)
∇̃T T −κ1κ

2
2E2 = −2γ′′−κ2

2γ.

Hence
γiv + 2γ′′ + κ2

2γ = 0,
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and its general solution is

γ(s) = cos(As)c1 + sin(As)c2 + cos(Bs)c3 + sin(Bs)c4,

where A, B are given by (3.13) and {ci} are constant vectors in R2n+2.
As γ satisfies

〈γ, γ〉 = 1, 〈γ′, γ′〉 = 1, 〈γ, γ′〉 = 0, 〈γ′, γ′′〉 = 0, 〈γ′′, γ′′〉 = 1 + κ2
1,

〈γ, γ′′〉 = −1, 〈γ′, γ′′′〉 = −(1 + κ2
1), 〈γ′′, γ′′′〉 = 0, 〈γ, γ′′′〉 = 0, 〈γ′′′, γ′′′〉 = 3κ2

1 + 1,

and since in s = 0 we have γ = c1 + c3, γ′ = Ac2 + Bc4, γ′′ = −A2c1 − B2c3,
γ′′′ = −A3c2 −B3c4, we obtain

c11 + 2c13 + c33 = 1 (3.14)

A2c22 + 2ABc24 + B2c44 = 1 (3.15)

Ac12 + Ac23 + Bc14 + Bc34 = 0 (3.16)

A3c12 + AB2c23 + A2Bc14 + B3c34 = 0 (3.17)

A4c11 + 2A2B2c13 + B4c33 = 1 + κ2
1 (3.18)

A2c11 + (A2 + B2)c13 + B2c33 = 1 (3.19)

A4c22 + (AB3 + A3B)c24 + B4c44 = 1 + κ2
1 (3.20)

A5c12 + A3B2c23 + A2B3c14 + B5c34 = 0 (3.21)

A3c12 + A3c23 + B3c14 + B3c34 = 0 (3.22)

A6c22 + 2A3B3c24 + B6c44 = 3κ2
1 + 1 (3.23)

where cij = 〈ci, cj〉. Since the determinant of the system given by (3.16), (3.17), (3.21)
and (3.22) is −A2B2(A2 −B2)4 6= 0 it follows that

c12 = c23 = c14 = c34 = 0.

The equations (3.14), (3.18) and (3.19) give

c11 =
1
2
, c13 = 0, c33 =

1
2
,

and, from (3.15), (3.20) and (3.23) follows that

c22 =
1
2
, c24 = 0, c44 =

1
2
.

Therefore, we obtain that {ci} are orthogonal vectors in R2n+2 with |c1| = |c2| = |c3| =
|c4| = 1√

2
.

Finally, since γ is a Legendre curve one obtains the second part of the Theorem.
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Remark 3.18 ([70]). We note that if γ is a proper-biharmonic Legendre circle, then
E2 ⊥ ϕT and n ≥ 3. If γ is a proper-biharmonic Legendre helix, then g0(E2, ϕT ) =
−A〈e1,J e2〉 and we have two cases: either E2 ⊥ ϕT and then {ei,J ej}4

i,j=1 is an or-
thonormal system in R2n+2, so n ≥ 3, or g0(E2, ϕT ) 6= 0 and, in this case, g0(E2, ϕT ) ∈
(−1, 1) \ {0}. We also observe that ϕT cannot be parallel to E2. When g0(E2, ϕT ) 6= 0
and n ≥ 3 the first four vectors (for example) in the canonical basis of the Euclidean
space R2n+2 satisfy the conditions of Theorem 3.17, whilst for n = 2 we can obtain
four vectors {e1, e2, e3, e4} satisfying these conditions in the following way. We consider
constant unit vectors e1, e3 and f in R6 such that {e1, e3, f,J e1,J e3,J f} is a J -basis.
Then, by a straightforward computation, it follows that the vectors e2 and e4 have to
be given by

e2 = ∓B

A
J e1 + α1f + α2J f, e4 = ±J e3,

where α1 and α2 are constants such that α2
1 +α2

2 = 1−B2/A2 = 2κ1/A
2. As a concrete

example, we can start with the following vectors in R6:

e1 = (1, 0, 0, 0, 0, 0), e3 = (0, 0, 1, 0, 0, 0), f = (0, 1, 0, 0, 0, 0)

and obtain
e2 =

(
0, α1, 0,−B

A
,α2, 0

)
, e4 = (0, 0, 0, 0, 0, 1),

where α2
1 + α2

2 = 1−B2/A2.

The classification of all proper-biharmonic Legendre curves in a Sasakian space form
N2n+1(c) was given in [70]. This classification is invariant under an isometry Ψ of N
which preserves ξ (or, equivalently, Ψ is ϕ-holomorphic).

In order to find higher dimensional proper-biharmonic submanifolds in a Sasakian
space form we gave Theorem 3.22.

Next we shall use the deformed Sasakian structure (ϕ, ξ, η, g) on S2n+1.

Theorem 3.19 ([70]). Let γ : I → S2n+1(c), n ≥ 2, c > −3 and c 6= 1, be a proper-
biharmonic Legendre curve parametrized by arc-length such that E2 ⊥ ϕT . Then the
equation of γ in the Euclidean space R2n+2 is either

γ(s) =
1√
2

cos
(√

2
a
s
)
e1 +

1√
2

sin
(√

2
a
s
)
e2 +

1√
2
e3,

for n ≥ 2, where {ei,J ej}3
i,j=1 are constant unit vectors orthogonal to each other, or

γ(s) =
1√
2

cos(As)e1 +
1√
2

sin(As)e2 +
1√
2

cos(Bs)e3 +
1√
2

sin(Bs)e4,

for n ≥ 3, where

A =

√
1 + κ1

√
a

a
, B =

√
1− κ1

√
a

a
, κ1 ∈

(
0,

1
a

)
, (3.24)

and {ei,J ej}3
i,j=1 are constant unit vectors orthogonal to each other.
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Proof. Again let us denote by ∇, ∇̇ and by ∇̃ the Levi-Civita connections on (S2n+1, g),
(S2n+1, g0) and (R2n+2, 〈, 〉), respectively. From the definition of the Levi-Civita con-
nection, as g0(X,ϕ0Y ) = dη0(X,Y ) and g(X,ϕY ) = dη(X,Y ), we obtain g(∇XY, Z) =
ag0(∇̇XY,Z), for any vector field Z and for any X, Y which satisfy X ⊥ ξ, Y ⊥ ξ and
X ⊥ ϕY . Further, it is easy to check that we have

∇XY = ∇̇XY, ∀X, Y ∈ C(TS2n+1) with X ⊥ ξ, Y ⊥ ξ, X ⊥ ϕY. (3.25)

First we consider the case when γ is the biharmonic circle, that is κ2
1 = c+3

4 . Let T =
γ′ be the unit tangent vector field (with respect to the metric g) along γ. Using (3.25)
we obtain ∇̇T T = ∇T T and ∇̇T E2 = ∇T E2.
From the Gauss and Frenet equations we get

∇̃T T = ∇̇T T − 〈T, T 〉γ = κ1E2 − 1
a
γ

and
∇̃T ∇̃T T = (−κ2

1 −
1
a
)T = −2

a
T.

Hence
aγ

′′′
+ 2γ′ = 0,

with the general solution

γ(s) = cos
(√

2
a
s
)
c1 + sin

(√
2
a
s
)
c2 + c3,

where {ci} are constant vectors in R2n+2.
As γ verifies the following equations,

〈γ, γ〉 = 1, 〈γ′, γ′〉 =
1
a
, 〈γ, γ′〉 = 0, 〈γ′, γ′′〉 = 0, 〈γ′′, γ′′〉 =

2
a2

, 〈γ, γ′′〉 = −1
a
,

and in s = 0 we have γ = c1 + c3, γ′ =
√

2
ac2, γ′′ = − 2

ac1, one obtains

c11 + 2c13 + c33 = 1, c22 =
1
2
, c12 + c23 = 0, c12 = 0, c11 =

1
2
, c11 + c13 =

1
2
,

where cij = 〈ci, cj〉. Consequently, we obtain that {ci} are orthogonal vectors in R2n+2

with |c1| = |c2| = |c3| = 1√
2
.

Finally, using the facts that γ is a Legendre curve and g(∇γ′γ
′, ϕγ′) = 0 one obtains

easily that 〈ci,J cj〉 = 0 for any i, j = 1, 2, 3.
Now we assume that γ is a biharmonic helix, that is κ2

1 + κ2
2 = c+3

4 , κ2
1 ∈

(
0, c+3

4

)
.

First, using (3.25), we obtain ∇̇T T = ∇T T , ∇̇T E2 = ∇T E2 and ∇̇T E3 = ∇T E3.
From the Gauss and Frenet equations we get

∇̃T T = ∇̇T T − 〈T, T 〉γ = κ1E2 − 1
a
γ,

∇̃T ∇̃T T = κ1∇̃T E2 − 1
a
T = κ1

(
− κ1T + κ2E3

)
− 1

a
T = −

(
κ2

1 +
1
a

)
T + κ1κ2E3,
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and

∇̃T ∇̃T ∇̃T T = −
(
κ2

1 + 1
a

)
∇̃T T + κ1κ2∇̃T E3 = −

(
κ2

1 + 1
a

)
∇̃T T − κ1κ

2
2E2

= − 2
aγ′′ − 1

aκ2
2γ.

Therefore
aγiv + 2γ′′ + κ2

2γ = 0,

and its general solution is

γ(s) = cos(As)c1 + sin(As)c2 + cos(Bs)c3 + sin(Bs)c4,

where A, B are given by (3.24) and {ci} are constant vectors in R2n+2.
The curve γ satisfies

〈γ, γ〉 = 1, 〈γ′, γ′〉 =
1
a
, 〈γ, γ′〉 = 0, 〈γ′, γ′′〉 = 0, 〈γ′′, γ′′〉 =

1 + aκ2
1

a2
,

〈γ, γ′′〉 = −1
a
, 〈γ′, γ′′′〉 = −1 + aκ2

1

a2
, 〈γ′′, γ′′′〉 = 0, 〈γ, γ′′′〉 = 0,

〈γ′′′, γ′′′〉 =
3aκ2

1 + 1
a3

,

and in s = 0 we have

γ = c1 + c3, γ′ = Ac2 + Bc4, γ′′ = −A2c1 −B2c3, γ′′′ = −A3c2 −B3c4.

Then, it follows
c11 + 2c13 + c33 = 1 (3.26)

A2c22 + 2ABc24 + B2c44 =
1
a

(3.27)

Ac12 + Ac23 + Bc14 + Bc34 = 0 (3.28)

A3c12 + AB2c23 + A2Bc14 + B3c34 = 0 (3.29)

A4c11 + 2A2B2c13 + B4c33 =
1 + aκ2

1

a2
(3.30)

A2c11 + (A2 + B2)c13 + B2c33 =
1
a

(3.31)

A4c22 + (AB3 + A3B)c24 + B4c44 =
1 + aκ2

1

a2
(3.32)

A5c12 + A3B2c23 + A2B3c14 + B5c34 = 0 (3.33)

A3c12 + A3c23 + B3c14 + B3c34 = 0 (3.34)

A6c22 + 2A3B3c24 + B6c44 =
3aκ2

1 + 1
a3

(3.35)

where cij = 〈ci, cj〉.
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The solution of the system given by (3.28), (3.29), (3.33) and (3.34) is

c12 = c23 = c14 = c34 = 0.

From equations (3.26), (3.30) and (3.31) we get

c11 =
1
2
, c13 = 0, c33 =

1
2
,

and, from (3.27), (3.32), (3.35),

c22 =
1
2
, c24 = 0, c44 =

1
2
.

We obtain that {ci} are orthogonal vectors in R2n+2 with |c1| = |c2| = |c3| = |c4| = 1√
2
.

Finally, since γ is a Legendre curve and g(∇γ′γ
′, ϕγ′) = 0, one obtains the conclusion.

In the third case, just like for S3 (see [71]), we obtain.

Theorem 3.20 ([70]). Let γ : I → S2n+1(c), c > 1, be a proper-biharmonic Legendre
curve parametrized by arc-length such that E2 ‖ ϕT . Then the equation of γ in the
Euclidean space R2n+2 is

γ(s) =
√

B
A+B cos(As)e1 −

√
B

A+B sin(As)J e1

+
√

A
A+B cos(Bs)e3 +

√
A

A+B sin(Bs)J e3

=
√

B
A+B exp(−iAs)e1 +

√
A

A+B exp(iBs)e3,

where {e1, e3} are constant unit orthogonal vectors in R2n+2 with e3 orthogonal to J e1,
and

A =

√
3− 2a− 2

√
(a− 1)(a− 2)
a

, B =

√
3− 2a + 2

√
(a− 1)(a− 2)
a

. (3.36)

Remark 3.21 ([70]). For the fourth case the ODE satisfied by proper-biharmonic
Legendre curves in the unit (2n+1)-sphere may be also obtained but the computations
are rather complicated.

3.1.4 Biharmonic submanifolds in Sasakian space forms

A method to obtain biharmonic submanifolds in a Sasakian space form is provided by
the following Theorem.

Theorem 3.22 ([70]). Let (N2n+1, ϕ, ξ, η, g) be a strictly regular Sasakian space form
with constant ϕ-sectional curvature c and let i : M → N be an r-dimensional integral
submanifold of N , 1 ≤ r ≤ n. Consider

F : M̃ = I ×M → N, F (t, p) = φt(p) = φp(t),
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where I = S1 or I = R and {φt}t∈I is the flow of the vector field ξ. Then F : (M̃, g̃ =
dt2 + i∗g) → N is a Riemannian immersion, and it is proper-biharmonic if and only if
M is a proper-biharmonic submanifold of N .

Proof. From the definition of the flow of ξ we have

dF (t, p)
( ∂

∂t

)
=

d

ds
|s=t{φp(s)} = φ̇p(t) = ξ(φp(t)) = ξ(F (t, p)),

i.e. ∂
∂t is F -correlated to ξ and

∣∣∣dF (t, p)
( ∂

∂t

)∣∣∣ = |ξ(F (t, p))| = 1 =
∣∣∣ ∂

∂t

∣∣∣.

The vector Xp ∈ TpM can be identified to (0, Xp) ∈ T(t,p)(I ×M) and we have

dF(t,p)(Xp) = (dF )(t,p)(γ̇(0)) =
d

ds
|s=0{φt(γ(s))} = (dφt)p(Xp).

Since φt is an isometry |dF(t,p)(Xp)| = |(dφt)p(Xp)| = |Xp|.
Moreover,

g
(
dF(t,p)

(
∂
∂t

)
, dF(t,p)(Xp)

)
= g(ξ(φp(t)), (dφt)p(Xp))

= g((dφt)p(ξp), (dφt)p(Xp)) = g(ξp, Xp) = 0

= g̃( ∂
∂t , Xp),

and therefore F : (I ×M, g̃) → N is a Riemannian immersion.
Let F−1(TN) be the pull-back bundle over M̃ and ∇F the pull-back connection

determined by the Levi-Civita connection on N . We shall prove that

τ(F )(t,p) = (dφt)p(τ(i)) and τ2(F )(t,p) = (dφt)p(τ2(i)),

so, from the point of view of harmonicity and biharmonicity, M̃ and M have the same
behaviour.

We start with two remarks. First, let σ ∈ C(F−1(TN)) be a section in F−1(TN)
defined by σ(t,p) = (dφt)p(Zp), where Z is a vector field along M , i.e. Zp ∈ TpN ,
∀p ∈ M . One can easily check that

(∇F
Xσ)(t,p) = (dφt)p(∇N

XZ), ∀X ∈ C(TM). (3.37)

Then, if σ ∈ C(F−1(TN)), it follows that ϕσ given by (ϕσ)(t,p) = ϕφp(t)(σ(t,p)) is a
section in F−1(TN) and

∇F
∂
∂t

ϕσ = ϕ∇F
∂
∂t

σ. (3.38)

Now, we consider {X1, ..., Xr} a local orthonormal frame field on U , where U is an open
subset of M . The tension field of F is given by

τ(F ) = ∇F
∂
∂t

dF
( ∂

∂t

)
− dF

(
∇fM∂

∂t

∂

∂t

)
+

r∑

a=1

{∇F
Xa

dF (Xa)− dF (∇fMXa
Xa)}. (3.39)
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As
∇F

∂
∂t

dF
( ∂

∂t

)
= ∇N

ξ ξ = 0, ∇fM∂
∂t

∂

∂t
= ∇I

∂
∂t

∂

∂t
= 0,

(∇F
Xa

dF (Xa))(t,p) = (dφt)p(∇N
Xa

Xa), dF(t,p)(∇fMXa
Xa) = (dφt)p(∇M

Xa
Xa),

replacing in (3.39) we get
τ(F )(t,p) = (dφt)p(τ(i)).

In order to obtain that τ2(F )(t,p) = (dφt)p(τ2(i)), we shall prove first that ∇F
∂
∂t

τ(F ) =

−ϕ(τ(F )).
Since [ ∂

∂t , Xa] = 0, a = 1, ..., r, it follows that

∇F
∂
∂t

dF (Xa) = ∇F
Xa

dF
( ∂

∂t

)
.

But (
∇F

Xa
dF

(
∂
∂t

))
(t,p)

= ∇N
dF(t,p)Xa

ξ = ∇N
(dφt)pXa

ξ = −ϕ((dφt)p(Xa))

= −(dφt)p(ϕXa),

so (
∇F

∂
∂t

dF (Xa)
)

(t,p)
= −(dφt)p(ϕXa). (3.40)

We note that

RF
( ∂

∂t
,Xa

)
dF (Xa) = ∇F

∂
∂t

∇F
Xa

dF (Xa)−∇F
Xa
∇F

∂
∂t

dF (Xa)

and, on the other hand, as N is a Sasakian space form,

(
RF

( ∂

∂t
,Xa

)
dF (Xa)

)
(t,p)

= RN
φt(p)(ξ, (dφt)p(Xa))(dφt)p(Xa) = ξ.

Therefore
∇F

∂
∂t

∇F
Xa

dF (Xa)−∇F
Xa
∇F

∂
∂t

dF (Xa) = ξ (3.41)

Using (3.37) and (3.40), ∇F
Xa
∇F

∂
∂t

dF (Xa) can be written as

(
∇F

Xa
∇F

∂
∂t

dF (Xa)
)

(t,p)
= −(dφt)p(∇N

Xa
ϕXa)

= −(dφt)p(ξ + ϕ∇N
Xa

Xa).

(3.42)

Moreover, from (3.40)
(
∇F

∂
∂t

dF (∇fMXa
Xa)

)
(t,p)

=
(
∇F

∂
∂t

dF (∇M
Xa

Xa)
)

(t,p)

= −(dφt)p(ϕ∇M
Xa

Xa).

(3.43)
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Replacing (3.42) in (3.41) and using (3.43), we obtain

ξ = ∇F
∂
∂t

∇F
Xa

dF (Xa)−∇F
∂
∂t

dF (∇fMXa
Xa) +∇F

∂
∂t

dF (∇fMXa
Xa)−∇F

Xa
∇F

∂
∂t

dF (Xa)

= ∇F
∂
∂t

∇dF (Xa, Xa)− (dφt)p(ϕ∇M
Xa

Xa) + (dφt)p(ξ + ϕ∇N
Xa

Xa)

= ∇F
∂
∂t

∇dF (Xa, Xa) + ϕ(dφt)p(∇N
Xa

Xa −∇M
Xa

Xa) + ξ,

so (
∇F

∂
∂t

∇dF (Xa, Xa)
)

(t,p)
= −ϕ(dφt)p(∇di(Xa, Xa)). (3.44)

Since ∇dF ( ∂
∂t ,

∂
∂t) = 0, summing up in (3.44) we obtain

∇F
∂
∂t

τ(F ) = −ϕ(τ(F )). (3.45)

From (3.38) and (3.45) we have

∇F
∂
∂t

∇F
∂
∂t

τ(F ) = −∇F
∂
∂t

ϕ(τ(F )) = −ϕ∇F
∂
∂t

τ(F ) = ϕ2τ(F )

= −τ(F ),
(3.46)

and from (3.37)
(∇F

Xa
∇F

Xa
τ(F ))(t,p) = (dφt)p(∇N

Xa
∇N

Xa
τ(i)), (3.47)

(
∇F

∇fMXa
Xa

τ(F )
)

(t,p)
= (dφt)p

(
∇N
∇M

Xa
Xa

τ(i)
)
. (3.48)

From (3.46), (3.47) and (3.48) we obtain

−(∆F τ(F ))(t,p) = ∇F
∂
∂t

∇F
∂
∂t

τ(F ) +
∑r

a=1{∇F
Xa
∇F

Xa
τ(F )−∇F

∇fMXa
Xa

τ(F )}

= −τ(F )(t,p) − (dφt)p(∆iτ(i)).
(3.49)

Using the form of the curvature tensor field RN , after a straightforward computation,
we get

traceRF (dF, τ(F ))dF = −τ(F ) + (dφt)p(traceRN
p (di, τ(i))di). (3.50)

Finally, from (3.49) and (3.50) we conclude

τ2(F )(t,p) = (dφt)p(τ2(i)).

Remark 3.23 ([70]). The previous result was expected because of the following remark.
Assume that (N2n+1, ϕ, ξ, η, g) is a compact strictly regular Sasakian manifold and let
G : M → N be an arbitrary smooth map from a compact Riemannian manifold M .
If F is biharmonic, then the map G is biharmonic, where F : M̃ = S1 × M → N ,
F (t, p) = φt(G(p)).
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Indeed, an arbitrary variation {Gs}s of G induces a variation {Fs}s of F . We can check
that τ(p,t)(Fs) = (dφt)Gs(p)(τp(Gs)) and, from the biharmonicity of F and the Fubini
Theorem, we get

0 =
d

ds
|s=0{E2(Fs)} =

1
2

d

ds
|s=0

∫
fM
|τ(Fs)|2 veg =

1
2
2π

d

ds
|s=0

∫

M
|τ(Gs)|2 vg

= 2π
d

ds
|s=0{E2(Gs)}.

Since d
ds |s=0{E2(Gs)} = 0 for any variation {Gs}s of G, it follows that G is biharmonic.

In particular, if M is a submanifold of N and G is the inclusion map i, then we have
the direct implication of the Theorem.

Theorem 3.24 ([70]). Let M̃2 be a surface of N2n+1(c) invariant under the flow-action
of the characteristic vector field ξ. Then M is proper-biharmonic if and only if, locally,
it is given by F (t, s) = φt(γ(s)), where γ is a proper-biharmonic Legendre curve.

Proof. A surface M̃ of N2n+1 invariant under the flow-action of the characteristic vector
field ξ, that is φt(p) ∈ M , for any t and any p ∈ M , can be written, locally, F (t, s) =
φt(γ(s)), where γ is a Legendre curve in N . Then, from Theorem 3.22, such a surface
is proper-biharmonic if and only if γ is proper-biharmonic.

Corollary 3.25 ([70]). Let M̃2 be a surface of S2n+1 endowed with its canonical Sasakian
structure which is invariant under the flow-action of the characteristic vector field ξ.
Then M is proper-biharmonic if and only if, locally, it is given by F (t, s) = φt(γ(s)),
where γ is a proper-biharmonic Legendre curve given by Theorem 3.17.

Next, consider the unit (2n+1)-dimensional sphere S2n+1 endowed with its canonical
or deformed Sasakian structure. The flow of ξ is φt(z) = exp(−i t

a)z, and from Theo-
rems 3.19, 3.20 and 3.22 we obtain explicit examples of proper-biharmonic surfaces in
(S2n+1, ϕ, ξ, η, g), a > 0, of constant mean curvature.
Moreover, we reobtain a result in [4].

Proposition 3.26 ([4]). Let F : M̃3 → (S5, ϕ0, ξ0, η0, g0) ⊂ R6 be a proper-biharmonic
anti-invariant immersion. Then

F (t, u, v) =
exp(−it)√

2
(exp(iu), i exp(−iu) sin(

√
2v), i exp(−iu) cos(

√
2v)).

Proof. It was proved in [120] that the proper-biharmonic integral surface of (S5, ϕ0, ξ0, η0,
g0) is given by

x(u, v) =
1√
2
(exp(iu), i exp(−iu) sin(

√
2v), i exp(−iu) cos(

√
2v)).

Now, composing with the flow of ξ0 we reobtain the result in [4].
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3.2 Biharmonic hypersurfaces in Sasakian space forms

3.2.1 Introduction

The first result of the second section is the characterization of the biharmonic subman-
ifolds in a strictly regular Sasakian space form N(c) obtained from submanifolds in the
quotient space N̄(c + 3) by using the Boothby-Wang fibration. We call such subman-
ifolds Hopf cylinders. In order to insure the existence, we show that c + 3 must be
positive and then, by using the Takagi classification, we obtain all proper-biharmonic
Hopf cylinders over homogeneous real hypersurfaces in complex projective spaces of
constant holomorphic sectional curvature c + 3 > 0.

3.2.2 Biharmonic hypersurfaces in Sasakian space forms

Let (N2n+1, ϕ, ξ, η, g) be a strictly regular Sasakian space form with constant ϕ-sectional
curvature c, and π : N → N̄ = N/ξ the Boothby-Wang fibration. Let ī : M̄ → N̄ be
a submanifold and consider the associated Hopf cylinder i : M = π−1(M̄) → N , of
dimension m. We shall denote by B, A and H the second fundamental form of M in
N , the shape operator and the mean curvature vector field, respectively. By ∇⊥ and
∆⊥ we shall denote the normal connection and Laplacian on the normal bundle of M
in N .

We have the following characterization.

Theorem 3.27 ([69]). The Hopf cylinder i : Mm = π−1(M̄) → N is biharmonic if and
only if





∆⊥H = − traceB(·, AH ·) + c(m+2)+3m−2
4 H + 3(c−1)

4 (ϕ(ϕH)⊥)⊥

4 traceA∇⊥· H(·) + m grad(|H|2)− 3(c− 1)(ϕ(ϕH)⊥)> = 0.

(3.51)

Corollary 3.28 ([69]). If M̄ is a hypersurface of N̄ , then M = π−1(M̄) is biharmonic
if and only if 




∆⊥H =
(
− |B|2 + c(n+1)+3n−1

2

)
H

2 traceA∇⊥· H(·) + n grad(|H|2) = 0.
(3.52)

Proof. This result follows easily since, in codimension 1, (ϕH)⊥ = 0 and

traceB(·, AH ·) = |B|2H.

Now, since τ(i) = 2nH = (τ (̄i))H = (2n− 1)H̄H , we obtain the following.

Corollary 3.29 ([69]). If M̄ is a hypersurface and |H̄| = constant 6= 0, then M =
π−1(M̄) is proper-biharmonic if and only if

|B|2 =
c(n + 1) + 3n− 1

2
.
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We shall prove now a Lawson type formula which relates |B|2 to |B̄|2 (see [63], [76]
and [86]). First we denote by ϕ⊥M the restriction of ϕ to the normal bundle of M in N
composed with the projection on the same normal bundle, that is ϕ⊥Mσ = (ϕσ)⊥, for
any σ a section in the normal bundle of M in N .

Proposition 3.30 ([69]). Let M̄ be a submanifold of N̄ , and denote by B̄ its second
fundamental form. Then, the second fundamental form B of π−1(M̄) in N and B̄ are
related by

|B|2 = |B̄|2 + 2(2n + 1−m)− 2|ϕ⊥M |2.

Proof. Let us consider X̄, Ȳ ∈ C(TM̄). We have




∇N

X̄H Ȳ H = (∇N̄
X̄

Ȳ )H + 1
2V [X̄H , Ȳ H ]

∇X̄H Ȳ H = (∇M̄
X̄

Ȳ )H + 1
2V [X̄H , Ȳ H ]

,

thus B(X̄H , Ȳ H) = (B̄(X̄, Ȳ ))H .
Also,

B(X̄H , ξ) =
∑2n+1

a=m+1 g(B(X̄H , ξ), σa)σa =
∑2n+1

a=m+1 g(∇N
X̄H ξ −∇X̄H ξ, σa)σa

= −∑2n+1
a=m+1 g(ϕX̄H , σa)σa =

∑2n+1
a=m+1 g(ϕσa, X̄

H)σa,

where {σa}2n+1
a=m+1 is a local orthonormal frame in the normal bundle of M in N .

Next, let {X̄α}m−1
α=1 be a local orthonormal frame on M̄ . It follows that {X̄H

α }m−1
α=1 ∪

{ξ} is a local orthonormal frame on M and one obtains

|B|2 = |B(ξ, ξ)|2 + 2
∑m−1

α=1 |B(X̄H
α , ξ)|2 +

∑m−1
α,β=1 |B(X̄H

α , X̄H
β )|2

= 2
∑m−1

α=1

∑2n+1
a=m+1(g(ϕσa, X̄

H
α ))2 + |B̄|2

= |B̄|2 + 2(2n + 1−m−∑2n+1
a=m+1 |(ϕσa)⊥|2).

Corollary 3.31 ([69]). If M̄ is a hypersurface, then |B|2 = |B̄|2 + 2.

From Corollary 3.29 and Corollary 3.31 we obtain the following result.

Proposition 3.32 ([69]). If |H̄| = constant 6= 0, then M = π−1(M̄) is proper-
biharmonic if and only if

|B̄|2 =
c(n + 1) + 3n− 5

2
.

Remark 3.33 ([69]). From Proposition 3.32 we see that there exist no proper-biharmonic
hypersurfaces M = π−1(M̄) in N(c) if c ≤ 5−3n

n+1 , which implies that such hypersurfaces
do not exist if c ≤ −3, whatever the dimension of N is.
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Proposition 3.34 ([69]). If M = π−1(M̄) is a proper-biharmonic hypersurface with
constant mean curvature, then

|H|2 ∈
(
0,

(2n− 1)(c(n + 1) + 3n− 5)
8n2

)
.

Proof. Assume that M = π−1(M̄) is a proper-biharmonic hypersurface with constant
mean curvature. Then, from Corollary 3.29 and Proposition 3.32 follows that

|B|2 =
c(n + 1) + 3n− 1

2
, |B̄|2 =

c(n + 1) + 3n− 5
2

.

On the other hand we have the inequalities

|B|2 ≥ 2n|H|2 and |B̄|2 ≥ (2n− 1)|H̄|2.
It can be easily proved that there are no non-minimal umbilical hypersurfaces of type
M = π−1(M̄) and it is known that M̄ cannot be umbilical. Therefore, in the above
inequalities we cannot have equality, so

c(n + 1) + 3n− 1
2

> 2n|H|2 and
c(n + 1) + 3n− 5

2
> (2n− 1)|H̄|2.

But

|H|2 =
(2n− 1)2

(2n)2
|H̄|2 <

(2n− 1)(c(n + 1) + 3n− 5)
8n2

.

Since (2n−1)(c(n+1)+3n−5)
8n2 < c(n+1)+3n−1

4n , one obtains

|H|2 ∈
(
0,

(2n− 1)(c(n + 1) + 3n− 5)
8n2

)
.

Proposition 3.35 ([69]). If M = π−1(M̄) is a proper-biharmonic hypersurface with
constant mean curvature, then the scalar curvature s of M is constant

s = (c + 3)(n2 − n) +
c− 1

2
(n− 3) + 4n2|H|2.

Proof. Let {Xi}2n
i=1 be a local orthonormal frame on M .

Using the Gauss equation we have

g(R(Xi, X)Y, Xi) = g(RN (Xi, X)Y, Xi)− g(B(X,Xi), B(Xi, Y ))

+g(B(Xi, Xi), B(X, Y )).
(3.53)

We consider H = |H|σ and A = Aσ, where σ is a unit section in the normal bundle of
M in N . We obtain

∑2n
i=1(g(B(Xi, Xi), B(X, Y ))− g(B(X,Xi), B(Xi, Y )))

= g(2nH,B(X,Y ))−∑2n
i=1 g(B(X, Xi), σ)g(B(Xi, Y ), σ)

= 2n|H|g(σ,B(X, Y ))−∑2n
i=1 g(A(X), Xi)g(A(Y ), Xi).

(3.54)
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In order to compute
∑2n

i=1 g(RN (Xi, X)Y,Xi) we shall use the local orthonormal frame
{X̄H

α }2n−1
α=1 ∪ {ξ} on M where {X̄α}2n−1

α=1 is a local orthonormal frame on M̄ . From the
expression of the curvature tensor field of N we have

g(RN (X̄H
α , X)Y, X̄H

α ) = c+3
4 (g(X, Y )− g(X, X̄H

α )g(Y, X̄H
α ))

+ c−1
4 (−η(X)η(Y ) + 3g(ϕX, X̄H

α )g(ϕY, X̄H
α ))

and
g(RN (ξ,X)Y, ξ) =

c + 3
4

(g(X,Y )− η(X)η(Y ))− c− 1
4

g(ϕX,ϕY ).

In conclusion
∑2n

i=1 g(RN (Xi, X)Y, Xi) = (2n−1)(c+3)
4 g(X, Y )− (2n−1)(c−1)

4 η(X)η(Y )

+ c−1
2 g(ϕX, ϕY )− 3(c−1)

4 g(X, ϕσ)g(Y, ϕσ).
(3.55)

We obtain, using (3.53), (3.54), (3.55) and Corollary 3.29, the scalar curvature of M

s = trace Ricci = c+3
4 2n(2n− 1) + c−1

4 (2n− 4) + 4n2|H|2 − |B|2

= (c + 3)(n2 − n) + c−1
2 (n− 3) + 4n2|H|2.

3.2.3 Classification results for biharmonic hypersurfaces in Sasakian
space forms with ϕ-sectional curvature c > −3

In [123] all homogeneous real hypersurfaces in the complex projective space CPn, n > 1,
are classified and five types of such hypersurfaces are identified (see also [104]). We shall
use them for classifying the proper-biharmonic Hopf cylinders M = π−1(M̄) in Sasakian
space forms N2n+1(c), c + 3 > 0.

3.2.4 Types A1, A2

We shall consider u ∈ (0, π
2 ) and r a positive constant given by 1

r2 = c+3
4 . A hypersurface

of Type A1 in CPn(c+3) is a geodesic sphere and it has two distinct principal curvatures:
λ2 = 1

r cotu of multiplicity 2n−2 and a = 2
r cot 2u of multiplicity 1, while a hypersurface

of Type A2 has three distinct principal curvatures: λ1 = −1
r tanu of multiplicity 2p,

λ2 = 1
r cotu of multiplicity 2q, and a = 2

r cot 2u of multiplicity 1, where p > 0, q > 0,
and p + q = n− 1.

We note that if c = 1 and M̄ is a hypersurface of Type A1 or A2, then π−1(M̄) is
the standard (extrinsic) product of a circle of radius cosu and a (2n − 1)-dimensional
sphere of radius sinu or, respectively, the standard product of two spheres of dimensions
2p + 1 and 2q + 1 and of radii cosu and sinu.

Now, for the biharmonicity of the hypersurfaces M = π−1(M̄) in N2n+1(c), where
M̄ is a hypersurface in CPn(c + 3) of Type A1 or A2, we can state the following result.

Theorem 3.36 ([69]). Let M = π−1(M̄) be the Hopf cylinder over M̄ .
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1. If M̄ is of Type A1, then M is proper-biharmonic if and only if either

(a) c = 1 and (tan u)2 = 1, or

(b) c ∈
[
−3n2+2n+1+8

√
2n−1

n2+2n+5
, +∞

)
\ {1} and

(tanu)2 = n+
2c− 2±

√
c2(n2 + 2n + 5) + 2c(3n2 − 2n− 1) + 9n2 − 30n + 13

c + 3
.

2. If M̄ is of Type A2, then M is proper-biharmonic if and only if either

(a) c = 1, (tanu)2 = 1 and p 6= q, or

(b) c ∈
[−3(p−q)2−4n+4+8

√
(2p+1)(2q+1)

(p−q)2+4n+4
, +∞

)
\ {1} and

(tanu)2 = n
2p+1 + 2c−2

(c+3)(2p+1)

±
√

c2((p−q)2+4n+4)+2c(3(p−q)2+4n−4)+9(p−q)2−12n+4

(c+3)(2p+1) .

Proof. First, assume that M̄ is of Type A1. Then, from Proposition 3.32, we have that
M = π−1(M̄) is biharmonic if and only if

|B̄|2 = (2n− 2)λ2
2 + a2 = (2n− 2) 1

r2 (cotu)2 + 4
r2 (cot 2u)2

= c(n+1)+3n−5
2 .

Denoting tan u = t, after a straightforward computation, we obtain the equation

(c + 3)t4 − 2(c(n + 2) + 3n− 2)t2 + (2n− 1)(c + 3) = 0, (3.56)

which admits real solutions if and only if

c2(n2 + 2n + 5) + 2c(3n2 − 2n− 1) + 9n2 − 30n + 13 ≥ 0.

But c > 5−3n
n+1 and we can conclude that (3.56) has real solutions if and only if

c ∈
[−3n2 + 2n + 1 + 8

√
2n− 1

n2 + 2n + 5
, +∞

)
,

and these solutions are given by

t21,2 = n +
2c− 2±

√
c2(n2 + 2n + 5) + 2c(3n2 − 2n− 1) + 9n2 − 30n + 13

c + 3
> 0.

Now, we have that M is minimal if and only if M̄ is minimal and this means

(2n− 2)λ2 + a = 0,

which leads to (tanu)2 = 2n− 1.
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It is easy to obtain that if one of the solutions t21, t22 is equal to 2n − 1 then c = 1.
If c = 1, then M is proper-biharmonic if and only if (tanu)2 = 1, and if c 6= 1, then
t21 6= 2n− 1 and t22 6= 2n− 1.

Next, let M̄ be a hypersurface of Type A2. Then, according to Proposition 3.32, M
is biharmonic if and only if

|B̄|2 = 2pλ2
1 + 2qλ2

2 + a2 = 2p 1
r2 (tanu)2 + 2q 1

r2 (cotu)2 + 4
r2 (cot 2u)2

= c(n+1)+3n−5
2 .

This equation becomes, after a straightforward computation,

(c + 3)(2p + 1)t4 − 2(c(n + 2) + 3n− 2)t2 + (c + 3)(2q + 1) = 0, (3.57)

where t = tanu.
The equation (3.57) has real solutions if and only if

c2((p− q)2 + 4n + 4) + 2c(3(p− q)2 + 4n− 4) + 9(p− q)2 − 12n + 4 ≥ 0,

which, together with c > 5−3n
n+1 , leads to

c ∈
[−3(p− q)2 − 4n + 4 + 8

√
(2p + 1)(2q + 1)

(p− q)2 + 4n + 4
, +∞

)
\ {1}.

Then the solutions of equation (3.57) are

t21,2 = n
2p+1 + 2c−2

(c+3)(2p+1)

±
√

c2((p−q)2+4n+4)+2c(3(p−q)2+4n−4)+9(p−q)2−12n+4

(c+3)(2p+1) > 0.

(3.58)

The hypersurface M̄ is minimal if and only if

2pλ1 + 2qλ2 + a = 0,

which gives (tanu)2 = 2q+1
2p+1 . It follows that M is proper-biharmonic if c = 1, (tanu)2 =

1 and p 6= q, or c 6= 1 and tanu is given by (3.58).

Remark 3.37 ([69]). If c 6= 1, in the A1 case we can obtain two proper-biharmonic
Hopf cylinders, not only one. The same thing happens in the A2 case when p 6= q; for
p = q we do obtain a proper-biharmonic Hopf cylinder if and only if c ∈ (1, +∞) and,
in this case, it is given by:

(tanu)2 = 1 +
2(c− 1) + 2

√
c2(n + 1) + 2c(n− 1)− 3n + 1

n(c + 3)
.
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3.2.5 Types B, C, D and E

We shall consider u ∈ (0, π
4 ) and r a positive constant given by 1

r2 = c+3
4 . The Type

B hypersurfaces in complex projective space CPn(c + 3) have three distinct principal
curvatures: −1

r cotu and 1
r tanu, both of multiplicity n−1, and 2

r tan 2u of multiplicity
1. The hypersurfaces of Type C, D or E have five distinct principal curvatures: λ1 =
−1

r cotu, λ2 = 1
r cot

(
π
4 −u

)
, λ3 = 1

r cot
(

π
2 −u

)
, λ4 = 1

r cot
(

3π
4 −u

)
and a = −2

r cot 2u,
each with specific multiplicities (see [104] and [123]).

For what concerns the biharmonicity of Hopf cylinders M = π−1(M̄) we have the
following non-existence result.

Theorem 3.38 ([69]). There are no proper-biharmonic hypersurfaces M = π−1(M̄),
where M̄ is a hypersurface of Type B, C, D or E in complex projective space CPn(c+3).

Proof. First, let M̄ be a hypersurface of Type B. Then, from Proposition 3.32 we have
that M is biharmonic if and only if

|B̄|2 = (n− 1) 1
r2 ((cotu)2 + (tanu)2) + 4

r2 (tan 2u)2 = c(n+1)+3n−5
2 .

If we denote (sin 2u)2 = t we obtain easily the following equation

(cn + c + 3n− 1)t2 − (2cn− c + 6n− 7)t + (n− 1)(c + 3) = 0. (3.59)

If c = 1 the equation become nt2 − 2(n− 1)t + n− 1 = 0 and it has no real solutions.
Assume that c 6= 1. Then equation (3.59) has real solutions if and only if

c2(5− 4n)− 2c(12n− 11) + 37− 36n ≥ 0.

Further, it follows that

c ∈
[11− 12n− 8

√
n− 1

4n− 5
,
11− 12n + 8

√
n− 1

4n− 5

]
.

But since c > 5−3n
n+1 it results that there are no real solutions of (3.59) if n ≤ 17. Now,

if n > 17 we have two real solutions

t1,2 =
2cn− c + 6n− 7±

√
c2(5− 4n)− 2c(12n− 11) + 37− 36n

2(cn + c + 3n− 1)
.

Finally, it can be easily verified that t1,2 > 1 and this is a contradiction since t =
(sin 2u)2.

Let M̄ be a hypersurface of Type C. These hypersurfaces occur for n ≥ 5 and n
odd. The multiplicities of the principal curvatures are: n − 3 for λ1 and λ3, 2 for λ2

and λ4, and 1 for a.
In the same way as above, by denoting t = (sin 2u)2, we have that M is biharmonic if
and only if

(cn + c + 3n− 1)t2 − (2cn− 3c + 6n− 13)t + (n− 2)(c + 3) = 0. (3.60)

If c = 1 it is easy to see that (3.60) does not admit real solution. If c 6= 1 equation
(3.60) has real solutions if and only if

c2(17− 8n)− 2c(24n− 47) + 145− 72n ≥ 0
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and this means

c ∈
[24n− 47 + 8

√
2(n− 2)

17− 8n
,
24n− 47− 8

√
2(n− 2)

17− 8n

]
.

Since c > 5−3n
n+1 it follows that real solutions exist only if n ≥ 33 and they are

t1,2 =
2cn− 3c + 6n− 13±

√
c2(17− 8n)− 2c(24n− 47) + 145− 72n

2(cn + c + 3n− 1)
.

But t1,2 are greater than 1 and, since t = (sin 2u)2, M cannot be proper-biharmonic.
The hypersurfaces of Type D occurs only in CP 9(c+3). In this case, the multiplicity

of each of the first four principal curvatures is 4 and the multiplicity of the fifth one is
1.
Now, let M̄ be a hypersurface of Type D. As in the previous two cases, we obtain that
M is biharmonic if and only if

(10c + 26)t2 − (11c + 29)t + 5c + 15 = 0,

where t = (sin 2u)2. Real solutions exist if and only if

c ∈
[
− 241 + 16

√
5

79
,−241− 16

√
5

79

]
.

But c > 5−3n
n+1 = −11

5 and −11
5 > −241−16

√
5

79 . Thus there are no real solutions.
Finally, let M̄ be a hypersurface of Type E. This case occurs only in CP 15(c + 3),

and the multiplicities are: 8 for λ1 and λ3, 6 for λ2 and λ4 and 1 for the principal
curvature a.
It follows that M is biharmonic if and only if

(16c + 44)t2 − (19c + 53)t + 9c + 27 = 0,

where t = (sin 2u)2. The equation has real solutions if and only if

c ∈
[
− 649 + 24

√
6

215
,−649− 24

√
6

215

]
.

Since c > 5−3n
n+1 = −5

2 and −5
2 > −649−24

√
6

215 , there exist no real solutions.

3.3 Biharmonic integral C-parallel submanifolds in 7-dimen-
sional Sasakian space forms

3.3.1 Introduction

We start the last section of Chapter 3 by recalling some general facts on Sasakian
space forms with a special emphasis on the notion of integral C-parallel submanifolds.
Then we study the biharmonicity of maximum dimensional integral submanifolds in
a Sasakian space form. We obtain the necessary and sufficient conditions for such a
submanifold to be biharmonic, we prove some non-existence results and we find the
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characterization of proper-biharmonic integral C-parallel submanifolds of maximum di-
mension. Restricting our attention on 7-dimensional Sasakian space forms, we classify
all 3-dimensional proper-biharmonic integral C-parallel submanifolds in a 7-dimensional
Sasakian space form, and we find these submanifolds in the 7-sphere endowed with its
canonical and deformed Sasakian structures introduced by S. Tanno in [125]. A key
ingredient proved to be a special local basis constructed on the 3-dimensional integral
C-parallel submanifolds.

In the last part we classify the proper-biharmonic parallel Lagrangian submanifolds
of CP 3 by determining their horizontal lifts, with respect to the Hopf fibration, in S7(1).

3.3.2 Integral C-parallel submanifolds of a Sasakian manifold

We recall that a submanifold Mm of a Sasakian manifold (N2n+1, ϕ, ξ, η, g) is called
an integral submanifold if η(X) = 0 for any vector field X tangent to M . We have
ϕ(TM) ⊂ NM and m ≤ n, where TM and NM are the tangent bundle and the
normal bundle of M , respectively. Moreover, for m = n, one gets ϕ(NM) = TM . If we
denote by B the second fundamental form of M then, by a straightforward computation,
one obtains the relation

g(ϕZ,B(X,Y )) = g(ϕY, B(X, Z))

for any vector fields X, Y and Z tangent to M (see also [10]). We also note that Aξ = 0,
where A is the shape operator of M (see [26]).

A submanifold M̃ of N is said to be anti-invariant if ξ is tangent to M̃ and ϕ maps
the tangent bundle to M̃ into its normal bundle.

Next, we shall recall the notion of an integral C-parallel submanifold of a Sasakian
manifold (see, for example, [10]). Let Mm be an integral submanifold of a Sasakian
manifold (N2n+1, ϕ, ξ, η, g). Then M is said to be integral C-parallel if ∇⊥B is parallel
to the characteristic vector field ξ, where ∇⊥B is given by

(∇⊥B)(X, Y, Z) = ∇⊥XB(Y,Z)−B(∇XY, Z)−B(Y,∇XZ)

for any vector fields X, Y, Z tangent to M , ∇⊥ and ∇ being the normal connection
and the Levi-Civita connection on M , respectively. Thus, Mm is an integral C-parallel
submanifold if (∇⊥B)(X,Y, Z) = S(X, Y, Z)ξ for any vector fields X, Y , Z tangent to
M , where S(X, Y, Z) = g(ϕX, B(Y, Z)) is a totally symmetric tensor field of type (0, 3)
on M . It is not difficult to check that, when m = n, ∇⊥B = 0 if and only if B = 0,
i.e., Mn is totally geodesic.

Now, let Mm be an integral submanifold of a Sasakian manifold N2n+1, and denote
by H its mean curvature vector field. We say that H is C-parallel if ∇⊥H is parallel to
ξ, i.e., ∇⊥XH = θ(X)ξ, where θ is a 1-form on M . As we shall see, θ(X) = g(H,ϕX)
for any vector field X tangent to M .

In general, a Riemannian submanifold M of N is called parallel if ∇⊥B = 0, and
we say that H is parallel if ∇⊥H = 0.

The following two results shall be used later in this paper and, for the sake of
completeness, we also provide their proofs.

Proposition 3.39 ([67]). If the mean curvature vector field H of an integral submanifold
Mn of a Sasakian manifold (N2n+1, ϕ, ξ, η, g) is parallel then Mn is minimal.
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Proof. Let X,Y be two vector fields tangent to M . Since

g(B(X, Y ), ξ) = g(∇N
XY, ξ) = −g(Y,∇N

Xξ) = g(Y, ϕX) = 0

we have B(X, Y ) ∈ ϕ(TM) and, in particular, H ∈ ϕ(TM). Then

g(∇⊥XH, ξ) = g(∇N
XH, ξ) = −g(H,∇N

Xξ) = g(H, ϕX).

Thus, if ∇⊥H = 0 it follows that g(H, ϕX) = 0 for any vector field X tangent to M ,
and this means H = 0, since M has maximal dimension.

Proposition 3.40 ([67]). Let (N2n+1, ϕ, ξ, η, g) be a Sasakian manifold and Mm be an
integral C-parallel submanifold with mean curvature vector field H. The following hold:

1. ∇⊥XH = g(H, ϕX)ξ, for any vector field X tangent to M , i.e., H is C-parallel;
2. the mean curvature |H| is constant;

3. if m = n, then ∆⊥H = H.

Proof. In order to prove (1), we consider {Xi}m
i=1 to be a local geodesic frame at p ∈ M .

Then we have at p

(∇⊥B)(Xi, Xj , Xj) = ∇⊥Xi
B(Xj , Xj) = g(B(Xj , Xj), ϕXi)ξ

and, by summing for j = 1, . . . , m, we obtain ∇⊥Xi
H = g(H, ϕXi)ξ. Then, for (2), we

have
X(|H|2) = 2g(H,∇⊥XH) = 2g(H, ϕX)g(H, ξ) = 0

for any vector field X tangent to M , i.e., |H| is constant.
For the last item, we assume that m = n. As ∇N

Xξ = −ϕX, from the Weingarten
equation, we get Aξ = 0, where Aξ is the shape operator of M corresponding to ξ, and
∇⊥Xξ = ∇N

Xξ = −ϕX. Thus

∆⊥H = −
n∑

i=1

∇⊥Xi
∇⊥Xi

H = −
n∑

i=1

∇⊥Xi
(g(H,ϕXi)ξ)

= −
n∑

i=1

Xi(g(H,ϕXi))ξ −
n∑

i=1

g(H, ϕXi)∇N
Xi

ξ

= −
n∑

i=1

Xi(g(H,ϕXi))ξ +
n∑

i=1

g(H, ϕXi)ϕXi

= −
n∑

i=1

Xi(g(H,ϕXi))ξ + H.

But, since ∇N
Xi

ϕXi = ϕ∇N
Xi

Xi + ξ, it results

Xi(g(H,ϕXi)) = g(∇N
Xi

H, ϕXi) + g(H,ϕ∇N
Xi

Xi + ξ)

= g(−AHXi +∇⊥Xi
H, ϕXi) + g(H, ϕB(Xi, Xi))

= 0.

We have just proved that ∆⊥H = H.
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3.3.3 Biharmonic submanifolds in S2n+1(1)

Working with anti-invariant submanifolds rather than with cylinders, we can state the
following (known) result.

Proposition 3.41 ([67]). Let M̃m+1 be an anti-invariant submanifold of the strictly
regular Sasakian space form N2n+1(c), 1 ≤ m ≤ n, invariant under the flow-action of
the characteristic vector field ξ. Then M̃ is locally isometric to I ×Mm, where Mm is
an integral submanifold of N . Moreover, we have

1. M̃ is proper-biharmonic if and only if M is proper-biharmonic in N ;

2. if m = n, then M̃ is parallel if and only if M is C-parallel;

3. if m = n, then the mean curvature vector field of M̃ is parallel if and only if the
mean curvature vector field of M is C-parallel.

Proof. The restriction ξ
/fM of the characteristic vector field ξ to M̃ is a Killing vector

field tangent to M̃ . Since M̃ is anti-invariant, the horizontal distribution defined on M̃ is
integrable. Let p ∈ M̃ be an arbitrary point and M a small enough integral submanifold
of the horizontal distribution on M̃ such that p ∈ M . Then F : I×M → F (I×M) ⊂ M̃ ,
F (t, p) = φt(p), is an isometry. As M is an integral submanifold of the horizontal
distribution on M̃ , it is an integral submanifold of N .

The item (1) follows immediately from Theorem 3.22, and (2) and (3) are known
and can be checked by straightforward computations.

We recall that, if M̃2 is a surface of N2n+1(c) invariant under the flow-action of
the characteristic vector field ξ, then it is also anti-invariant and, locally, M̃ is given by
F (t, s) = φt(γ(s)), where γ is a Legendre curve in N . Moreover, M̃ is proper-biharmonic
if and only if γ is proper-biharmonic in N .

Now, consider M̃2 a surface of N2n+1(c) invariant under the flow-action of the
characteristic vector field ξ and let T = γ′ and E2 be the first two vector fields defined
by the Frenet equations of the above Legendre curve γ. As ∇F

∂/∂tτ(F ) = −ϕ(τ(F )),
where ∇F is the pull-back connection determined by the Levi-Civita connection on N ,
we can prove the following proposition.

Proposition 3.42 ([67]). Let M̃2 be a proper-biharmonic surface of N2n+1(c) invariant
under the flow-action of the characteristic vector field ξ. Then M̃ has parallel mean
curvature vector field if and only if c > 1 and ϕT = ±E2.

Corollary 3.43 ([67]). The proper-biharmonic surfaces of S2n+1(1) invariant under the
flow-action of the characteristic vector field ξ0 are not of parallel mean curvature vector
field.

We shall see that we do have examples of maximum dimensional proper-biharmonic
anti-invariant submanifolds of S2n+1(1), invariant under the flow-action of ξ0, which
have parallel mean curvature vector field.
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In [120] the parametric equations of all proper-biharmonic integral surfaces in S5(1)
were obtained. Up to an isometry of S5(1) which preserves ξ0, we have only one proper-
biharmonic integral surface given by

x(u, v) =
1√
2
(exp(iu), i exp(−iu) sin(

√
2v), i exp(−iu) cos(

√
2v)).

The map x induces a proper-biharmonic Riemannian embedding from the 2-dimensio-
nal torus T 2 = R2/Λ into S5(1), where Λ is the lattice generated by the vectors (2π, 0)
and (0,

√
2π).

Remark 3.44 ([67]). We recall that an isometric immersion x : M → Rn+1 of a
compact manifold is said to be of k-type if its spectral decomposition contains exactly k
non-constant terms excepting the center of mass x0 = (Vol(M))−1

∫
M x vg. When x0 =

0, the submanifold is called mass-symmetric (see [42]). It was proved in [18, 21] that a
proper-biharmonic compact constant mean curvature submanifold Mm of Sn is either
a 1-type submanifold of Rn+1 with center of mass of norm equal to 1/

√
2, or a mass-

symmetric 2-type submanifold of Rn+1. Now, using [8, Theorem 3.5], where all mass-
symmetric 2-type integral surfaces in S5(1) were determined, and [29, Proposition 4.1],
the result in [120] can be (partially) reobtained.

Further, we consider the cylinder over x and we recover the result in [4]: up to an
isometry of S5(1) which preserves ξ0, we have only one 3-dimensional proper-biharmonic
anti-invariant submanifold of S5(1) invariant under the flow-action of ξ0,

F (t, u, v) = exp(−it)x(u, v).

The map y is a proper-biharmonic Riemannian immersion with parallel mean curvature
vector field and it induces a proper-biharmonic Riemannian immersion from the 3-
dimensional torus T 3 = R3/Λ into S5, where Λ is the lattice generated by the vectors
(2π, 0, 0), (0, 2π, 0) and (0, 0,

√
2π). Moreover, a closer look shows that y factorizes

to a proper-biharmonic Riemannian embedding in S5, and its image is the standard
(extrinsic) product between three Euclidean circles, one of radius 1/

√
2 and each of the

other two of radius 1/2. Indeed, we may consider the orthogonal transformation of R3

given by

T (t, u, v) =
(−t + u√

2
,
−t− u√

2
, v

)
= (t′, u′, v′)

and the map y becomes

F1(t′, u′, v′) =
1√
2
(exp(i

√
2t′), i exp(i

√
2u′) sin(

√
2v′), i exp(i

√
2u′) cos(

√
2v′)).

Then, acting with an appropriate holomorphic isometry of C4, y1 becomes

F2(t′, u′, v′) =
( 1√

2
exp(i

√
2t′),

1
2

exp(i(u′ − v′)),
1
2

exp(i(u′ + v′))
)

and, further, an obvious orthogonal transformation of the domain leads to the desired
results.
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3.3.4 Biharmonic integral submanifolds of maximum dimension in
Sasakian space forms

Let (N2n+1, ϕ, ξ, η, g) be a Sasakian space form with constant ϕ-sectional curvature
c, and Mn an n-dimensional integral submanifold of N . We recall that this means
η(X) = 0 for any vector field X tangent to M . We shall denote by B, A and H the
second fundamental form of M in N , the shape operator and the mean curvature vector
field, respectively. By ∇⊥ and ∆⊥ we shall denote the connection and the Laplacian in
the normal bundle. We have the following theorem.

Theorem 3.45 ([67]). The integral submanifold i : Mn → N2n+1 is biharmonic if and
only if 




∆⊥H + traceB(·, AH ·)− c(n + 3) + 3n− 3
4

H = 0,

4 traceA∇⊥
(·)H

(·) + n grad(|H|2) = 0.
(3.61)

Corollary 3.46 ([67]). Let N2n+1(c) be a Sasakian space form with constant ϕ-sectional
curvature c ≤ (3− 3n)/(n + 3). Then an integral submanifold Mn with constant mean
curvature |H| in N2n+1(c) is biharmonic if and only if it is minimal.

Proof. Assume that Mn is a biharmonic integral submanifold with constant mean cur-
vature |H| in N2n+1(c). It follows, from Theorem 3.45, that

g(∆⊥H, H) = −g(traceB(·, AH ·),H) +
c(n + 3) + 3n− 3

4
|H|2

=
c(n + 3) + 3n− 3

4
|H|2 −

n∑

i=1

g(B(Xi, AHXi),H)

=
c(n + 3) + 3n− 3

4
|H|2 −

n∑

i=1

g(AHXi, AHXi)

=
c(n + 3) + 3n− 3

4
|H|2 − |AH |2.

Thus, from the Weitzenböck formula

1
2
∆|H|2 = g(∆⊥H, H)− |∇⊥H|2,

one obtains
c(n + 3) + 3n− 3

4
|H|2 − |AH |2 − |∇⊥H|2 = 0. (3.62)

If c < (3 − 3n)/(n + 3), relation (3.62) is equivalent to H = 0. Now, assume that
c = (3 − 3n)/(n + 3). As for integral submanifolds ∇⊥H = 0 is equivalent to H = 0,
again (3.62) is equivalent to H = 0.

Corollary 3.47 ([67]). Let N2n+1(c) be a Sasakian space form with constant ϕ-sectional
curvature c ≤ (3−3n)/(n+3). Then a compact integral submanifold Mn is biharmonic
if and only if it is minimal.
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Proof. Assume that Mn is a biharmonic compact integral submanifold. As in the proof
of Corollary 3.46 we have

g(∆⊥H, H) =
c(n + 3) + 3n− 3

4
|H|2 − |AH |2

and so ∆|H|2 ≤ 0, which implies that |H|2 is constant. Therefore we obtain that M is
minimal in this case too.

Remark 3.48 ([67]). From Corollaries 3.46 and 3.47 it is easy to see that in a Sasakian
space form N2n+1(c) with constant ϕ-sectional curvature c+3 ≤ 0 a biharmonic compact
integral submanifold, or a biharmonic integral submanifold Mn with constant mean
curvature, is minimal whatever the dimension of N is.

Proposition 3.49 ([67]). Let N2n+1(c) be a Sasakian space form and i : Mn → N2n+1

be an integral C-parallel submanifold. Then (τ2(i))> = 0.

Proof. Indeed, from Proposition 3.40 we have |H| is constant and ∇⊥H is parallel to ξ,
which implies that A∇⊥XH = 0 for any vector field X tangent to M , since Aξ = 0. Thus
we conclude the proof.

Proposition 3.50 ([67]). A non-minimal integral C-parallel submanifold Mn of a Sasakian
space form N2n+1(c) is proper-biharmonic if and only if c > (7− 3n)/(n + 3) and

traceB(·, AH ·) =
c(n + 3) + 3n− 7

4
H.

Proof. We know, from Proposition 3.40, that ∆⊥H = H. Hence, from Theorem 3.45
and the above Proposition, it follows that Mn is biharmonic if and only if

traceB(·, AH ·) =
c(n + 3) + 3n− 7

4
H.

Next, if Mn verifies the above condition, we contract with H and get

|AH |2 =
c(n + 3) + 3n− 7

4
|H|2.

Since AH and H do not vanish it follows that c > (7− 3n)/(n + 3).

Now, let {Xi}n
i=1 be an arbitrary orthonormal local frame field on the integral C-

parallel submanifold Mn of a Sasakian space form N2n+1(c), and let Ai = AϕXi , i =
1, . . . , n, be the corresponding shape operators. Then, from Proposition 3.50, we obtain

Proposition 3.51 ([67]). A non-minimal integral C-parallel submanifold Mn of a Sasakian
space form N2n+1(c), c > (7− 3n)/(n + 3), is proper-biharmonic if and only if




g(A1, A1) . . . g(A1, An)
...

...
...

g(An, A1) . . . g(An, An)







traceA1
...

traceAn


 = k




traceA1
...

traceAn


 .

where k = (c(n + 3) + 3n− 7)/4.
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3.3.5 3-dimensional biharmonic integral C-parallel submanifolds of a
Sasakian space form N7(c)

In [10], C. Baikoussis, D.E. Blair and T. Koufogiorgios classified the 3-dimensional
integral C-parallel submanifolds in a Sasakian space form (N7(c), ϕ, ξ, η, g). In order to
obtain the classification, they worked with a special local orthonormal basis (see also
[57]). Here we shall briefly recall how this basis is constructed.

Let i : M3 → N7(c) be an integral C-parallel submanifold of constant mean curva-
ture. Let p be an arbitrary point of M , and consider the function fp : UpM → R given
by

fp(u) = g(B(u, u), ϕu),

where UpM = {u ∈ TpM : g(u, u) = 1} is the unit sphere in the tangent space TpM . If
fp(u) = 0, for all u ∈ UpM , then, for any v1, v2 ∈ UpM such that g(v1, v2) = 0 we have
that

g(B(v1, v1), ϕv1) = 0 and g(B(v1, v1), ϕv2) = 0.

We obtain B(v1, v1) = 0, and then it follows that B vanishes at the point p.
Next, assume that the function fp does not vanish identically. Since UpM is compact,

fp attains an absolute maximum at a unit vector X1. It follows that
{

g(B(X1, X1), ϕX1) > 0, g(B(X1, X1), ϕX1) ≥ |g(B(w, w), ϕw)|
g(B(X1, X1), ϕw) = 0, g(B(X1, X1), ϕX1) ≥ 2g(B(w, w), ϕX1),

where w is a unit vector tangent to M at p and orthogonal to X1. It is easy to see that
X1 is an eigenvector of the shape operator A1 = AϕX1 with the corresponding eigenvalue
λ1. Then, since A1 is symmetric, we consider X2 and X3 to be unit eigenvectors of A1,
orthogonal to each other and to X1, with the corresponding eigenvalues λ2 and λ3.
Further, we distinguish two cases.

If λ2 6= λ3, we can choose X2 and X3 such that
{

g(B(X2, X2), ϕX2) ≥ 0, g(B(X3, X3), ϕX3) ≥ 0
g(B(X2, X2), ϕX2) ≥ g(B(X3, X3), ϕX3).

If λ2 = λ3, we consider f1,p the restriction of fp to {w ∈ UpM : g(w, X1) = 0}, and
we have two subcases:

1. the function f1,p is identically zero. In this case, we have
{

g(B(X2, X2), ϕX2) = 0, g(B(X2, X2), ϕX3) = 0
g(B(X2, X3), ϕX3) = 0, g(B(X3, X3), ϕX3) = 0.

2. the function f1,p does not vanish identically. Then we choose X2 such that f1,p(X2)
is an absolute maximum. We have that

{
g(B(X2, X2), ϕX2) > 0, g(B(X2, X2), ϕX2) ≥ g(B(X3, X3), ϕX3) ≥ 0
g(B(X2, X2), ϕX3) = 0, g(B(X2, X2), ϕX2) ≥ 2g(B(X3, X3), ϕX2).
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Now, with respect to the orthonormal basis {X1, X2, X3}, the shape operators A1,
A2 = AϕX2 and A3 = AϕX3 , at p, can be written as follows

A1 =




λ1 0 0
0 λ2 0
0 0 λ3


 , A2 =




0 λ2 0
λ2 α β
0 β µ


 , A3 =




0 0 λ3

0 β µ
λ3 µ δ


 . (3.63)

We also have A0 = Aξ = 0. With these notations we have

λ1 > 0, λ1 ≥ |α|, λ1 ≥ |δ|, λ1 ≥ 2λ2, λ1 ≥ 2λ3. (3.64)

For λ2 6= λ3 we get
α ≥ 0, δ ≥ 0 and α ≥ δ (3.65)

and for λ2 = λ3 we obtain that

α = β = µ = δ = 0 (3.66)

or
α > 0, δ ≥ 0, α ≥ δ, β = 0 and α ≥ 2µ. (3.67)

Now, let Vp be a normal neighbourhood around the point p. Consider q an arbitrary
point in Vp, and let γq : [0, 1] → Vp be the unique geodesic with γq(0) = p and γq(1) = q.
For an arbitrary vector u ∈ TpM we consider its parallel transport u(t) along the
geodesic γq; u = u(0). It is not difficult to check that the function

t −→ fγq(t)(u(t)) = g(B(u(t), u(t)), ϕ(t))

is constant and thus fp(u) = fq(u(1)). Therefore, fq vanishes identically if and only if
fp vanishes too, i.e. Bq = 0 if and only if Bp = 0.

Assume that fp does not vanish identically, and consider X1(t) the parallel transport
of X1 along γq. The function fγq(t) attains an absolute maximum at X1(t). We define
A1 = AϕX1 along γq and we have that X1(t) is a an eigenvector of A1. Again, we
consider X2(t) and X3(t) the parallel transport of X2 and X3, respectively, along γ. It
follows that X2(t) and X3(t) are eigenvectors for A1 and λ1, λ2, λ3 are constant allong
γq. As the function

t −→ g(B(Xi, Xj), ϕ(Xk))

is constant, it follows that the functions α, β and µ are constant along γq.
Using this basis and de Rham decomposition theorem, in [10], the authors classified

locally all 3-dimensional integral C-parallel submanifolds in a 7-dimensional Sasakian
space form.

According to that classification, if c + 3 > 0 then M is a non-minimal integral
C-parallel submanifold if and only if either:
Case I. M is flat, it is locally a product of three curves which are helices of osculating
orders r ≤ 4, and λ1 = (λ2 − (c + 3)/4)/λ, λ2 = λ3 = λ = constant 6= 0, α = constant,
β = 0, µ = constant, δ = constant, such that −√c + 3/2 < λ < 0, 0 < α ≤ λ1, α > 2µ,
α ≥ δ ≥ 0, (c+3)/4+λ2 +αµ−µ2 = 0 and ((3λ2− (c+3)/4)/λ)2 +(α +µ)2 + δ2 > 0,
or
Case II. M is locally isometric to a product γ × M̄2, where γ is a curve and M̄2 is a
C-parallel surface, and either
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(1) λ1 = 2λ2 = −λ3 =
√

c + 3/(2
√

2), α = µ = δ = 0, β = ±
√

3(c + 3)/(4
√

2). In
this case γ is a helix in N with curvatures κ1 = 1/

√
2 and κ2 = 1, and M̄2 is locally

isometric to the 2-dimensional Euclidean sphere of radius ρ =
√

8/(3(c + 3)), or

(2) λ1 = (λ2 − (c + 3)/4)/λ, λ2 = λ3 = λ = constant, α = β = µ = δ = 0, such that
−√c + 3/2 < λ < 0 and λ2 6= (c + 3)/12. In this case, γ is a helix in N with
curvatures κ1 = λ1 and κ2 = 1, and M̄2 is the 2-dimensional Euclidean sphere of
radius ρ = 1/

√
(c + 3)/4 + λ2.

Now, identifying the shape operators Ai with the corresponding matrices, from
Proposition 3.51, we get the following proposition.

Proposition 3.52 ([67]). A non-minimal integral C-parallel submanifold M3 of a Sasakian
space form N7(c), c > −1/3, is proper-biharmonic if and only if

(
3∑

i=1

A2
i

)


traceA1

traceA2

traceA3


 =

3c + 1
2




traceA1

traceA2

traceA3


 , (3.68)

where matrices Ai are given by (3.63).

Now, we can state the theorem.

Theorem 3.53 ([67]). A 3-dimensional integral C-parallel submanifold M3 of a Sasakian
space form N7(c) is proper-biharmonic if and only if either:

1. c > −1/3 and M3 is flat and it is locally a product of three curves:

• a helix with curvatures κ1 = (λ2 − (c + 3)/4)/λ and κ2 = 1,

• a helix of order 4 with curvatures κ1 =
√

λ2 + α2, κ2 = (α/κ1)
√

λ2 + 1 and
κ3 = −(λ/κ1)

√
λ2 + 1,

• a helix of order 4 with curvatures κ1 =
√

λ2 + µ2 + δ2, κ2 = (δ/κ1)
√

λ2 + µ2 + 1
and κ3 = (κ2/δ)

√
λ2 + µ2, if δ 6= 0, or a circle with curvature κ1 =

√
λ2 + µ2,

if δ = 0,

where λ, α, µ, δ are constants given by




(
3λ2 − c + 3

4

)(
3λ4 − 2(c + 1)λ2 +

(c + 3)2

16

)
+ λ4((α + µ)2 + δ2) = 0,

(α + µ)
(
5λ2 + α2 + µ2 − 7c + 5

4

)
+ µδ2 = 0,

δ
(
5λ2 + δ2 + 3µ2 + αµ− 7c + 5

4

)
= 0,

c + 3
4

+ λ2 + αµ− µ2 = 0

(3.69)
such that −√c + 3/2 < λ < 0, 0 < α ≤ (λ2 − (c + 3)/4)/λ, α ≥ δ ≥ 0, α > 2µ
and λ2 6= (c + 3)/12 ;

or
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(2) M3 is locally isometric to a product γ × M̄2 between a curve and a C-parallel
surface of N , and either

(a) c = 5/9, γ is a helix in N7(5/9) with curvatures κ1 = 1/
√

2 and κ2 = 1, and
M̄2 is locally isometric to the 2-dimensional Euclidean sphere with radius√

3/2, or

(b) c ∈ [(−7 + 8
√

3)/13,+∞) \ {1}, γ is a helix in N7(c) with curvatures
κ1 = (λ2 − (c + 3)/4)/λ and κ2 = 1, and M̄2 is locally isometric to the
2-dimensional Euclidean sphere with radius 2/

√
4λ2 + c + 3, where

λ < 0 and λ2 =





4c + 4±√13c2 + 14c− 11
12

if c < 1,

4c + 4−√13c2 + 14c− 11
12

if c > 1.

(3.70)

Proof. Let M3 be a proper-biharmonic integral C-parallel submanifold of a Sasakian
space form N7(c). From Proposition 3.52 we see that c > −1/3.

Next, we easily get that the equation (3.68) is equivalent to the system




( 3∑

i=1

λi

)( 3∑

i=1

λ2
i −

3c + 1
2

)
+ (α + µ)(αλ2 + µλ3) + (β + δ)(βλ2 + δλ3) = 0,

( 3∑

i=1

λi

)
(αλ2 + µλ3) + (α + µ)

(
2λ2

2 + α2 + 3β2 + µ2 + βδ − 3c + 1
2

)
+ µ(β + δ)2 = 0,

( 3∑

i=1

λi

)
(βλ2 + δλ3) + β(α + µ)2 + (β + δ)

(
2λ2

3 + δ2 + 3µ2 + β2 + αµ− 3c + 1
2

)
= 0.

(3.71)

In the following, we shall split the study of this system, as M3 is given by Case I
or Case II of the classification.
Case I. The system (3.71) is equivalent to the system given by the first three equations
of (3.69). Now, M is not minimal if and only if at least one of the components of
the mean curvature vector field H does not vanish and, from the first equation of
(3.69), it follows that λ2 must be different from (c + 3)/12. Thus, again using [10] for
the expressions of the curvatures of the three curves, we obtain the first case of the
theorem.
Case II. (1) In this case, the second equation of (3.71) is identically satisfied and
the other two are equivalent to c = 5/9. Thus, from the classification of the integral
C-parallel submanifolds, we get the first part of the second case of the theorem.

(2) The second and the third equation of (3.71) are satisfied, in this case, and the
first equation is equivalent to

3λ4 − 2(c + 1)λ2 +
(c + 3)2

16
= 0.

This equation has solutions if and only if

c ∈
(
−∞,

−7− 8
√

3
13

]
∪

[−7 + 8
√

3
13

, +∞
)
,
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and these solutions are given by

λ2 =
4c + 4±√13c2 + 14c− 11

12
.

Since c > −1/3 it follows that c ∈ [(−7 + 8
√

3)/13, +∞). Moreover, if c = 1, from the
above relation, it follows that λ2 must be equal to 1 or 1/3, which is a contradiction,
and therefore c ∈ [(−7 + 8

√
3)/13, +∞) \ {1}. Further, it is easy to check that λ2 =

(4c + 4 +
√

13c2 + 14c− 11)/12 < (c + 3)/4 if and only if c ∈ [(−7 + 8
√

3)/13, 1) and
λ2 = (4c+4−√13c2 + 14c− 11)/12 < (c+3)/4 if and only if c ∈ [(−7+8

√
3)/13, +∞)\

{1}.

3.3.6 Proper-biharmonic submanifolds in the 7-sphere

In this section we shall work with the standard model for simply connected Sasakian
space forms N7(c) with c + 3 > 0, which is the unit Euclidean sphere S7 endowed with
its canonical Sasakian structure or with the deformed Sasakian structure introduced by
S. Tanno.

In [10] the authors obtained the explicit equation of the 3-dimensional integral C-
parallel flat submanifolds in S7(1), whilst in [68] we gave the explicit equation of such
submanifolds in S7(c), c + 3 > 0.

Using these results and Theorem 3.53 we easily get the following theorem.

Theorem 3.54 ([67]). A 3-dimensional integral C-parallel submanifold M3 of S7(c),
c = 4/a− 3 > −3, is proper-biharmonic if and only if either:

1. c > −1/3 and M3 is flat, it is locally a product of three curves and its position
vector in C4 is

x(u, v, w) =
λ√

λ2 + 1
a

exp
(
i
( 1

aλ
u
))
E1

+
1√

a(µ− α)(2µ− α)
exp(−i(λu− (µ− α)v))E2

+
1√

aρ1(ρ1 + ρ2)
exp(−i(λu + µv + ρ1w))E3

+
1√

aρ2(ρ1 + ρ2)
exp(−i(λu + µv − ρ2w))E4,

where ρ1,2 = (
√

4µ(2µ− α) + δ2 ± δ)/2 and λ, α, µ, δ are real constants given by
(3.69) such that −1/

√
a < λ < 0, 0 < α ≤ (λ2 − 1/a)/λ, α ≥ δ ≥ 0, α > 2µ,

λ2 6= 1/(3a) and {Ei}4
i=1 is an orthonormal basis of C4 with respect to the usual

Hermitian inner product;

or

(2) M3 is locally isometric to a product γ × M̄2 between a curve and a C-parallel
surface of N , and either
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(a) c = 5/9, γ is a helix in S7(5/9) with curvatures κ1 = 1/
√

2 and κ2 = 1, and
M̄2 is locally isometric to the 2-dimensional Euclidean sphere with radius√

3/2, or

(b) c ∈ [(−7+8
√

3)/13, +∞)\{1}, γ is a helix in S7(c) with curvatures κ1 = (λ2−
(c + 3)/4)/λ and κ2 = 1, and M̄2 is locally isometric to the 2-dimensional
Euclidean sphere with radius 2/

√
4λ2 + c + 3, where

λ < 0 and λ2 =





4c + 4±√13c2 + 14c− 11
12

if c < 1,

4c + 4−√13c2 + 14c− 11
12

if c > 1.

Now, applying this theorem in the case of the 7-sphere endowed with its canonical
Sasakian structure we get the following Corollary, which also shows that, for c = 1, the
system (3.69) can be completely solved.

Corollary 3.55 ([67]). A 3-dimensional integral C-parallel submanifold M3 of S7(1) is
proper-biharmonic if and only if it is flat, it is locally a product of three curves and its
position vector in C4 is

x(u, v, w) =− 1√
6

exp(−i
√

5u)E1 +
1√
6

exp
(
i
( 1√

5
u− 4

√
3√

10
v
))
E2

+
1√
6

exp
(
i
( 1√

5
u +

√
3√
10

v − 3
√

2
2

w
))
E3

+
1√
2

exp
(
i
( 1√

5
u +

√
3√
10

v +
√

2
2

w
))
E4,

where {Ei}4
i=1 is an orthonormal basis of C4 with respect to the usual Hermitian inner

product. Moreover, the xu-curve is a helix with curvatures κ1 = 4
√

5/5 and κ2 = 1,
the xv-curve is a helix of order 4 with curvatures κ1 =

√
29/

√
10, κ2 = 9

√
2/
√

145 and
κ3 = 2

√
3/
√

145 and the xw-curve is a helix of order 4 with curvatures κ1 =
√

5/
√

2,
κ2 = 2

√
3/
√

10 and κ3 =
√

3/
√

10.

Proof. Since c = 1 the system (3.69) becomes




(3λ2 − 1)2(λ2 − 1) + λ4((α + µ)2 + δ2) = 0,

(α + µ)(5λ2 + α2 + µ2 − 3) + µδ2 = 0,

δ(5λ2 + δ2 + 3µ2 + αµ− 3) = 0,

λ2 + αµ− µ2 + 1 = 0

(3.72)

with the supplementary conditions

− 1 < λ < 0, 0 < α ≤ λ2 − 1
λ

, α ≥ δ ≥ 0, α > 2µ and λ2 6= 1
3
. (3.73)

We note that, since α > 2µ, from the fourth equation of (3.72) it results that µ < 0.
The third equation of system (3.72) suggests that, in order to solve this system, we

need to split our study in two cases as δ is equal to 0 or not.
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Case 1: δ = 0. In this case the third equation holds whatever the values of λ, α and µ
are, and so does the condition α ≥ δ. We also note that α 6= −µ, since otherwise, from
the first equation, it results λ2 = 1 or λ2 = 1/3, which are both contradictions.

In the following, we shall look for α of the form α = ωµ, where ω ∈ (−∞, 0) \ {−1},
since α > 0, µ < 0 and α 6= −µ. From the second and the fourth equations of the
system we have λ2 = −(ω2 + 3ω − 2)/((ω − 2)(ω − 3)), µ2 = 8/((ω − 2)(ω − 3)) and
then α2 = 8ω2/((ω−2)(ω−3)). Replacing in the first equation, after a straightforward
computation, it can be written as

8(ω + 1)3(1− 3ω)
(ω − 3)3(ω − 2)

= 0

and its solutions are −1 and 1/3. But ω ∈ (−∞, 0) \ {−1} and therefore we conclude
that there are no solutions of the system that verify all conditions (3.73) when δ = 0.
Case 2: δ > 0. In this case the third equation of (3.72) becomes

5λ2 + δ2 + 3µ2 + αµ− 3 = 0.

Now, since α > 0 and µ < 0, we can take again α = ωµ, with ω ∈ (−∞, 0), and
then, from the last three equations of the system, we easily get λ2 = −(ω2 + 5ω +
2)/((ω − 1)(ω − 2)), α2 = 8ω3/((ω − 1)2(ω − 2)), µ2 = 8ω/((ω − 1)2(ω − 2)) and
δ2 = 8(ω + 1)2/(ω − 1)2.
Next, from the first equation of (3.72), after a straightforward computation, one obtains

16(ω + 1)3(ω + 3)
(ω − 2)(ω − 1)3

= 0,

whose solutions are −3 and −1. If ω = −1 it follows that λ2 = 1/3, which is a
contradiction, and therefore we obtain that ω = −3. Hence

λ2 =
1
5
, α2 =

27
10

, µ2 =
3
10

and δ2 = 2.

As λ < 0, α > 0, µ < 0 and δ > 0 it results that λ = −1/
√

5, α = 3
√

3/
√

10,
µ = −√3/

√
10 and δ =

√
2. It can be easily seen that also the conditions (3.73) are

verified by these values, and then, by the meaning of the first statement of Theorem
3.54, we come to the conclusion.

Remark 3.56 ([67]). A proper-biharmonic compact submanifold M of Sn of constant
mean curvature |H| ∈ (0, 1) is of 2-type and mass-symmetric (see [18, 21]). In our case,
the Riemannian immersion x can be written as x = x1 + x2, where

x1(u, v, w) =
1√
2

exp
(
i
( 1√

5
u +

√
3√
10

v +
√

2
2

w
))
E4,

x2(u, v, w) =− 1√
6

exp(−i
√

5u)E1 +
1√
6

exp
(
i
( 1√

5
u− 4

√
3√

10
v
))
E2

+
1√
6

exp
(
i
( 1√

5
u +

√
3√
10

v − 3
√

2
2

w
))
E3,

and ∆x1 = 3(1 − |H|)x1 = x1, ∆x2 = 3(1 + |H|)x2 = 5x2, |H| = 2/3. Now, Corol-
lary 3.55 could also be proved by using the main result in [9] and [29, Proposition 4.1].
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Remark 3.57 ([67]). By a straightforward computation we can deduce that the map x
factorizes to a map from the torus T 3 = R3/Λ into R8, where Λ is the lattice generated
by the vectors a1 = (6π/

√
5,
√

3π/
√

10, π/
√

2), a2 = (0,−3
√

5π/
√

6,−π/
√

2) and a3 =
(0, 0,−4π/

√
2), and the quotient map is a Riemannian immersion.

By the meaning of Theorem 3.22 we know that the cylinder over x, given by

F (t, u, v, w) = φt(x(u, v, w)),

is a proper-biharmonic map into S7(1). Moreover, we have the following proposition.

Proposition 3.58 ([67]). The cylinder over x determines a proper-biharmonic Rie-
mannian embedding from the torus T 4 = R4/Λ into S7, where the lattice Λ is gen-
erated by a1 = (2π/

√
6, 0, 0, 0), a2 = (0, 2π/

√
6, 0, 0), a3 = (0, 0, 2π/

√
6, 0) and a4 =

(0, 0, 0, 2π/
√

2). The image of this embedding is the standard (extrinsec) product between
a Euclidean circle of radius 1/

√
2 and three other Euclidean circles, each of radius 1/

√
6.

Proof. As the flow of the characteristic vector field ξ is given by φt(z) = exp(−it)z we
get

F (t, u, v, w) =− 1√
6

exp(−i(t +
√

5u))E1 +
1√
6

exp
(
i
(
− t +

1√
5
u− 4

√
3√

10
v
))
E2

+
1√
6

exp
(
i
(
− t +

1√
5
u +

√
3√
10

v − 3
√

2
2

w
))
E3

+
1√
2

exp
(
i
(
− t +

1√
5
u +

√
3√
10

v +
√

2
2

w
))
E4,

where {Ei}4
i=1 is an orthonormal basis of C4 with respect to the usual Hermitian inner

product.
Now, we consider the following two orthogonal transformations of R4:





1√
2
t +

1√
10

u +
√

3
2
√

5
v +

1
2
w = t′,

2√
5
u−

√
6

4
√

5
v −

√
2

4
w = u′,

√
5

2
√

2
v −

√
3

2
√

2
w = v′,

1√
2
t− 1√

10
u−

√
3

2
√

5
v − 1

2
w = w′,

and 



√
2√
6
t′ +

2√
6
u′ = t̃,

−
√

2√
6
t′ +

1√
6
u′ −

√
3√
6
v′ = ũ,

−
√

2√
6
t′ +

1√
6
u′ +

√
3√
6
v′ = ṽ,

w′ = w̃.
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Then we obtain

F̃ (t̃, ũ, ṽ, w̃) =− 1√
6

exp(−i(
√

6t̃))E1 +
1√
6

exp(i(
√

6ũ))E2 +
1√
6

exp(i(
√

6ṽ))E3

+
1√
2

exp(i(
√

2w̃))E4,

which ends the proof.

Remark 3.59 ([67]). We see that F can be written as F = F1+F2, where F1(t, u, v, w) =
exp(−it)x1, F2(t, u, v, w) = exp(−it)x2, and ∆F1 = 2F1, ∆F2 = 6F2, the mean curva-
ture of y being equal to 1/2.

Remark 3.60 ([67]). It is known that the parallel flat (n + 1)-dimensional compact
anti-invariant submanifolds in S2n+1(1) are standard products of circles of radii ri,
i = 1, . . . , n+1, where

∑n+1
i=1 r2

i = 1 (see [135]). The biharmonicity of such submanifolds
was solved in [139].

3.3.7 Proper-biharmonic parallel Lagrangian submanifolds of CP 3

We consider the Hopf fibration π : S2n+1(1) → CPn(4), and M a Lagrangian submani-
fold of CPn. Then M̃ = π−1(M) is an (n + 1)-dimensional anti-invariant submanifold
of S2n+1 invariant under the flow-action of the characteristic vector field ξ0 and, locally,
M̃ is isometric to S1 ×Mn. The submanifold M is a parallel Lagrangian submanifold
if and only if M is an integral C-parallel submanifold (see [101]), and it was proved
in [66] that a parallel Lagrangian submanifold M is biharmonic if and only if M is
(−4)-biharmonic.

We recall here that a map ψ : (M, g) → (N,h) is (−4)-biharmonic if it is a critical
point of the (−4)-bienergy E2(ψ) − 4E(ψ), i.e., ψ verifies τ2(ψ) + 4τ(ψ) = 0. Also, a
real submanifold M of CPn is called Lagrangian if it has dimension n and the complex
structure J of CPn maps the tangent space to M onto the normal one.

Thus, in order to determine all proper-biharmonic parallel Lagrangian submanifolds
of CP 3, we shall determine the (−4)-biharmonic integral C-parallel submanifolds of
S7(1).

Just as in the case of Theorem 3.45 we obtain the following theorem.

Theorem 3.61 ([67]). The integral submanifold i : M3 → S7(1) is (−4)-biharmonic if
and only if {

∆⊥H + traceB(·, AH ·)− 7H = 0
4 traceA∇⊥

(·)H
(·) + 3 grad(|H|2) = 0.

Therefore it follows the next proposition.

Proposition 3.62 ([67]). A non-minimal integral C-parallel submanifold M3 of S7(1)
is (−4)-biharmonic if and only if

traceB(·, AH ·) = 6H. (3.74)

Now, we can state the theorem.
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Theorem 3.63 ([67]). A 3-dimensional integral C-parallel submanifold M3 of S7(1) is
(−4)-biharmonic if and only if either:

1. M3 is flat and it is locally a product of three curves:

• a helix with curvatures κ1 = (λ2 − 1)/λ and κ2 = 1,

• a helix of order 4 with curvatures κ1 =
√

λ2 + α2, κ2 = (α/κ1)
√

λ2 + 1 and
κ3 = −(λ/κ1)

√
λ2 + 1,

• a helix of order 4 with curvatures κ1 =
√

λ2 + µ2 + δ2, κ2 = (δ/κ1)
√

λ2 + µ2 + 1
and κ3 = (κ2/δ)

√
λ2 + µ2, if δ 6= 0, or a circle with curvature κ1 =

√
λ2 + µ2,

if δ = 0,

where λ, α, µ, δ are constants given by




(3λ2 − 1)(3λ4 − 8λ2 + 1) + λ4((α + µ)2 + δ2) = 0,
(α + µ)(5λ2 + α2 + µ2 − 7) + µδ2 = 0,

δ(5λ2 + δ2 + 3µ2 + αµ− 7) = 0,

1 + λ2 + αµ− µ2 = 0

(3.75)

such that −1 < λ < 0, 0 < α ≤ (λ2 − 1)/λ, α ≥ δ ≥ 0, α > 2µ and λ2 6= 1/3;

or

(2) M3 is locally isometric to a product γ × M̄2 between a helix with curvatures κ1 =
(
√

13 − 1)/
√

12− 3
√

13 and κ2 = 1, and a C-parallel surface of S7(1) which is

locally isometric to the 2-dimensional Euclidean sphere with radius
√

3/(7−√13).

Proof. It is easy to see that the equation (3.74) is equivalent to the system




( 3∑

i=1

λi

)( 3∑

i=1

λ2
i − 6

)
+ (α + µ)(αλ2 + µλ3) + (β + δ)(βλ2 + δλ3) = 0,

( 3∑

i=1

λi

)
(αλ2 + µλ3) + (α + µ)(2λ2

2 + α2 + 3β2 + µ2 + βδ − 6) + µ(β + δ)2 = 0,

( 3∑

i=1

λi

)
(βλ2 + δλ3) + β(α + µ)2 + (β + δ)(2λ2

3 + δ2 + 3µ2 + β2 + αµ− 6) = 0.

(3.76)
In the same way as for the study of biharmonicity, we shall split the study of this

system, as M3 is given by Case I or Case II of the classification.
Case I. The system (3.76) is equivalent to the system given by the first three equations
of (3.75) and, just like in the proof of Theorem 3.53, we conclude the result.
Case II. (1) It is easy to verify that this case cannot occur in this setting.

(2) The second and the third equation of system (3.76) are satisfied and the first
equation is equivalent to 3λ4 − 8λ2 + 1 = 0, whose solutions are λ2 = (4 ± √

13)/3.
Since λ2 < 1 it follows that λ2 = (4−√13)/3 and this, together with the classification
of the integral C-submanifolds, leads to the conclusion.
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Using the explicit equation of the 3-dimensional integral C-parallel flat submanifolds
in S7(1) (see [10]), we obtain the following corollary.

Corollary 3.64 ([67]). Any 3-dimensional flat (−4)-biharmonic integral C-parallel sub-
manifold M3 of S7(1) is given locally by

x(u, v, w) =
λ√

λ2 + 1
exp

(
i
( 1

λ
u
))
E1 +

1√
(µ− α)(2µ− α)

exp(−i(λu− (µ− α)v))E2

+
1√

ρ1(ρ1 + ρ2)
exp(−i(λu + µv + ρ1w))E3

+
1√

ρ2(ρ1 + ρ2)
exp(−i(λu + µv − ρ2w))E4,

where ρ1,2 = (
√

4µ(2µ− α) + δ2 ± δ)/2, −1 < λ < 0, 0 < α ≤ (λ2 − 1)/λ, α ≥ δ ≥ 0,
α > 2µ, λ2 6= 1/3, the tuple (λ, α, µ, δ) being one of the following

(
−

√
4−√13

3
,

√
7−√13

6
, −

√
7−√13

6
, 0

)
,

(
−

√
1

5 + 2
√

3
,

√
45 + 21

√
3

13
, −

√
6

21 + 11
√

3
, 0

)
,

or (
−

√
1

6 +
√

13
,

√
523 + 139

√
13

138
, −

√
79− 17

√
13

138
,

√
14 + 2

√
13

3

)
,

and {Ei}4
i=1 is an orthonormal basis of C4 with respect to the usual Hermitian inner

product.

Proof. In order to solve the system (3.75), we first note that, since α > 2µ, from the
fourth equation it results µ < 0.

The third equation suggests that we need to split our study in two cases as δ is equal
to 0 or not.
Case 1: δ = 0. In this case the third equation holds whatever the values of λ, α and
µ are, and so does the condition α ≥ δ.

If α = −µ we easily obtain that the solution of the system is

λ = −
√

4−√13
3

, α =

√
7−√13

6
, µ = −

√
7−√13

6
.

In the following, we shall look for α of the form α = ωµ, where ω ∈ (−∞, 0) \ {−1},
since α > 0 and µ < 0. From the second and the fourth equations of the system
we have λ2 = −(ω2 + 7ω − 6)/((ω − 2)(ω − 3)), µ2 = 12/((ω − 2)(ω − 3)) and then
α2 = 12ω2/((ω − 2)(ω − 3)). Replacing in the first equation, after a straightforward
computation, it can be written as

3ω6 + 16ω5 − 58ω4 − 140ω3 + 531ω2 − 444ω + 108 = 0,
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which is equivalent to

(ω − 2)2(3ω4 + 28ω3 + 42ω2 − 84ω + 27) = 0,

whose solutions are 2, −3±2
√

3 and (−5±2
√

13)/3. From these solutions the only one
to verify the supplementary conditions is ω = −3− 2

√
3, for which we have

λ = −
√

1
5 + 2

√
3
, α =

√
45 + 21

√
3

13
, µ = −

√
6

21 + 11
√

3
.

Case 2: δ > 0. In this case the third equation of (3.75) becomes

5λ2 + δ2 + 3µ2 + αµ− 7 = 0.

Now, again taking α = ωµ, this time with ω ∈ (−∞, 0), from the last three equations
of the system, we easily get

λ2 = − ω2 + 9ω + 2
(ω − 1)(ω − 2)

, α2 =
12ω3

(ω − 1)2(ω − 2)
,

µ2 =
12ω

(ω − 1)2(ω − 2)
, δ2 =

12(ω + 1)2

(ω − 1)2
.

Replacing in the first equation of the system we obtain the solutions −2 ± √
3 and

−4 ± √
13, from which only ω = −4 − √

13 verifies the supplementary conditions.
Therefore, we obtain

λ = −
√

1
6 +

√
13

, α =

√
523 + 139

√
13

138
, µ = −

√
79− 17

√
13

138
, δ =

√
14 + 2

√
13

3
,

and we are done.

Remark 3.65 ([67]). By a straightforward computations we can check that the images
of the cylinders over the above x are, respectively: the standard (extrinsic) product of

a circle of radius
√

(5−√13)/12 and three circles, each of radius
√

(7 +
√

13)/36; the

standard product of two circles each of radius
√

(3 +
√

3)/12 and two circles each of

radius
√

(3−√3)/12; the standard product of a circle of radius
√

(5 +
√

13)/12 and

three circles each of radius
√

(7−√13)/36.





Further developments

In [72], the authors studied proper-biharmonic submanifolds in Sn × R. First, they
gave a Simons type formula for submanifolds with parallel mean curvature vector field
(PMC) and then, the authors obtained a gap theorem for the mean curvature of certain
complete PMC proper-biharmonic submanifolds. Moreover, the complete determination
of all PMC proper-biharmonic surfaces in Sn×R was obtained. A first research direction
would be the continuation of the study of proper-biharmonic submanifolds in Sn×R. In
particular, it would be interesting to determine all proper-biharmonic surfaces in S2×R
without any additional hypothesis.

Recently, the bi-conservative submanifolds have been introduced in [31]. By defi-
nition, such a submanifold has free divergence bi-tensor field, i.e. div S2 = 0, and it
represents a generalization of the H-hypersurfaces in Euclidean spaces Rn. These hy-
persurfaces were introduced by T. Hasanis and T. Vlachos in [75]. One can prove that
a submanifold is bi-conservative if and only if the tangent part of the bitension field
vanishes. We intend to continue the study of the bi-conservative submanifolds. First,
we shall study the bi-conservative surfaces in 4-dimensional Euclidean space R4, and
then we shall study the bi-conservative submanifolds in real space forms, especially in
Sn.

Recently, H. Urakawa has studied for the first time the biharmonic maps with values
in a compact Lie group endowed with a bi-invariant metric ([129]). By using the Maurer-
Cartan form, the author gave the characterization for the biharmonic maps defined on
an open domain in R2, endowed with a conformal metric to the usual one, and with
values in a compact Lie group endowed with a bi-invariant metric. Another result that
he obtained is the explicit determination of biharmonic maps from the real line into
the group SU(2). A research direction will be the study of biharmonic maps (with
additional properties) in Lie groups.

The study of the biharmonicity of vector fields, thought of as maps from the base
manifold (M, g) to its tangent bundle (TM, G), where (M, g) is a compact Lie group
with a bi-invariant metric and G is the corresponding Sasaki metric, was recently initi-
ated in [93]. Another research direction will be the study of the biharmonicity of vector
fields when the domain manifold is a (non-compact) Lie group.

Although the theory of biharmonic maps and submanifolds is the main topic of
investigation, we shall further extend the search for, and the analysis of other similar
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problems, also discussing their applications in other theories. There are various fourth-
order elliptic equations similar to the biharmonic one, some of them derived from Geom-
etry, but also as mathematical models in Mechanics or Physics. An example derived
from Geometry is the equation of motion for the constrained Lagrangian associated to a
non-holonomic Lagrangian of second order. This equation is known in literature as the
Heisenberg spinning particle equation. An example of a fourth-order elliptic equation
that appears in Sciences is the steady state of a curvature-drive flow model for two
dimensional biphasic biological systems, such as the immunological synapse. A research
direction will be the study the biharmonic and other similar equations from the an-
alytical point of view, by investigating some properties of their solutions. We expect
to obtain existence results, conditions for the periodicity of the solutions, and stability
properties.

Some of the results concerning the theory of biharmonic maps and submanifolds
could be the main topic of a course for PhD students and, mixed with elements from
the theory of harmonic maps, of a graduate course. Considering that this theory is
mainly based on classical, very beautiful results of Differential Geometry, we expect
that such a course will be very appealing and useful for young researchers. The very
proof of this claim is the activity of our younger collaborators: Adina Balmuş and Dorel
Fetcu.

We should mention that well known mathematicians like Paul Baird, Bang-Yen
Chen, Eric Loubeau, Stefano Montaldo, Ye-Lin Ou, Harold Rosenberg, Hajime Urakawa
are interested in this kind of problems and some of their PhD. students are preparing
(or have already defended) their theses on biharmonicity.

Another way to attract young researchers to this field of Riemannian Geometry and
Geometric Analysis, is to include them in national and international research grants.
The author of this thesis has a good experience getting such grants, as he was awarded
6 national competitive grants, as well as more than 10 international fellowships.
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