
Babeş-Bolyai University
Business Information Systems Department

Habilitation Thesis

Candidate:
Gheorghe Cosmin SILAGHI

Cluj-Napoca
2012

Abstract

Peer-to-Peer systems represent one of the most dynamic and challenging research

area of distributed computing. With theoretical grounds on multi-agent systems,

P2P systems get closer to the practice, allowing large communities to automate

collaboration and deliver various services at low costs and good quality. Agents

are defined as computer systems capable of independent and autonomous action

on behalf of their users or owners, figuring out what need to be done to satisfy

the design objectives. The definition leads the research towards formal aspects

of the intelligence, agent research community being interested on formalizing the

interaction, modeling agent behaviors, devising intelligent algorithms and ap-

proaching pro-activity. By contrast, in distributed computing a peer represents

just another node with the same rank with others. Peers interaction is practically

modeled using the basic client-server paradigm, a peer playing either the role of

the client, either the role of the server, without the requirement that some master

(central) peer to coordinate everything. P2P systems gained such popularity that

they emerged to deliver various services. Initially, P2P communities gathered to-

gether to distribute music; later they formed huge distributed file systems where

everyone can store and find various items from books, movies and others. Nowa-

days, P2P systems represent the next step of the grid concept evolution, peers

delivering sophisticated services besides storage and computing power. Desktop

grids under the volunteer computing paradigm fit exactly this latter approach,

home Internet users donating their computing cycles to world-wide distributed

scientific projects.

In this context, one can note that distributed computing research community,

besides focusing on the practical implementation aspects of P2P systems, adopt

i

more and more ideas originating in the agent research field of artificial intelli-

gence. Peers are smarter and smarter, systems are delivering sophisticated ser-

vices, moving apart from the classical storage and computing power capabilities.

Everything become transparent under the umbrella of cloud computing, where

platforms, infrastructures and services are virtualized and delivered on-demand

to interested customers. Of course, with their increased usage and sophistication

of the delivered services, various research problems sprinkled out, from the classi-

cal resource management problem towards how to face with malicious behaviors

of peers who are interested to benefit from the community without contributing.

If peers are autonomous and independent each of another, it came out that

they might exhibit self-interested behaviors, including undesired ones. Applied to

a computer system, dependability is defined as the trustworthiness of a comput-

ing system which allows reliance to be justifiably placed on the service it delivers.

To trust and rely systems and services offered on the Internet by anonymous con-

tributors, measures and controls must be in place. Contributing to such systems

shall assure the participants that they will get a fair value back, meaning that

proper designed resource management mechanisms should exist. Thus, there is a

large space to use game theoretical analysis for proper design of such service-based

P2P systems.

This thesis summarizes our main scientific contribution, spread over the last

years, after the completion of the PhD. While during our PhD research we ap-

proached and investigated tools towards automated collaboration inside agent

communities; with this research we stepped in the field of distributed computing,

approaching resource management in systems composed of anonymous contrib-

utors. Within this thesis, we centered our contribution on systems with open

participation, which transparently deliver services under the umbrella of Service

Level Agreements. Assuming that a P2P system deployed over Internet deliv-

ers some services and the system allows everyone (with various capabilities) to

contribute, we devised a reputation model for resource usage control and access

control in the system. Given that contributors are self-interested and such a sys-

tem is organized as bargaining marketplace, we devised a bilateral negotiation

protocol towards service level agreements under time constraints. Approaching

ii

the challenging field of volunteer computing and desktop grids, we were firstly to

define, model and propose a solution against colluding attackers.

Our contribution enlarges the developments of grid, P2P and service systems

economics. We took principles and concepts developed, formalized and analyzed

part of the economic theory and apply them in automatic systems. The main

characteristic is that our proposed methods are fully automated and let the sys-

tems using them to fulfill their requirements without the human intervention.

When assessing the trust, our reputation model is based on the concept of utility.

Actors operating the service systems nodes need to define their goals and let the

utility reputation model to assess the others based on those goals. The automatic

SLA negotiation is strongly based on the strategic bargaining theory, strongly en-

couraged by the definition adopted in the WS-Agreement-Negotiation protocol.

Peers are equipped with learning techniques and negotiate self-interested, given

that they are able to express their preferences over the negotiation solutions.

When modeling the colluding malicious behavior in desktop grids, nodes actions

are observed on a time frame and a statistical model is computed for each node.

This statistical model allows the definition of a clustering procedure, to extract

out the majority of nodes that are behaving honestly.

The content of the thesis is disseminated in prestigious world journals and

was presented at recognized conferences over Europe and USA. The reputation

model was firstly presented at the 1st CoreGrid symposium, a premiere European

event on Grid Computing for the dissemination of the results from European and

member states initiatives as well as other international projects in Grid research

and technologies. Up to now, this model attracted 11 citations in ISI WoS and

Scopus. The review of the reputation model was initially published as a CoreGrid

technical report and attracted 23 citations in ISI WoS and Scopus. In August

2008, at the end of the CoreGrid FP6 project, it was ranked in the top 10 out

of 178 technical reports of CoreGrid by the number of downloads. The journal

version published in Security and Communication Networks at Wiley includes

as an addition the implementation of the model in the FP6 GridTrust project

and experimentation with access control. The sabotage tolerance model against

collusion in desktop grids was firstly presented at the PCGrid 2008 workshop

in conjunction with the prestigious IEEE IPDPS conference and next, it was

iii

accepted for publication in Journal of Grid Computing at Springer. The model

attracted follow-ups, mentioning here the PhD thesis of E. Staab, defended in

2010 at University of Luxembourg and works done at INRIA Grenoble by L.C.

Canon. We further contributed to the development of the Maximum Independent

Set approach of colleagues from University of Coimbra, who got published in

the Journal of Parallel and Distributed Computing. The SLA negotiation model

under time constraints was entirely developed at Babes-Bolyai University of Cluj-

Napoca. Initially, the model was presented at the 7th International Workshop

on the Economics and Business of Grids, Clouds, Systems, and Services GECON

2010 and the journal publication is with Future Generation Computer Systems

journal at Elsevier.

iv

Contents

Abstract i

List of Figures viii

List of Tables xi

1 Dependable Resource Management Tools towards Automated

Collaboration in Heterogeneous Computing Environments 1

1.1 Introduction . 2

1.2 Background and Related Work . 6

1.2.1 P2P systems . 6

1.2.1.1 Structuring P2P systems and discovering resources 7

1.2.1.2 Economics of P2P systems and sabotage 13

1.2.2 Service Level Agreements and Service-based P2P Systems 16

1.2.3 Desktop Grids . 20

1.3 Reputation Management . 24

1.3.1 Research objective . 24

1.3.2 Reputation-based trust management systems 26

1.3.2.1 Trust and reputation 28

1.3.2.2 Reputation systems 36

1.3.2.3 Using reputation in grids 63

1.3.2.4 Conclusion . 66

1.3.3 A Model of Virtual Organizations 68

1.3.4 A Utility-Based Reputation Model for VOs 69

1.3.4.1 Properties of the Reputation Model 72

v

CONTENTS

1.3.4.2 Reputation Management for VO Service Providers 75

1.3.4.3 Reputation Management for VO Users 77

1.3.5 A Reputation Management System 79

1.3.5.1 Usage Scenario 81

1.3.6 Analysis of the Reputation Models 82

1.3.6.1 VOs with reputation-rated resource providers . . 83

1.3.6.2 VOs with reputation-rated users 84

1.3.6.3 VOs with reputation-rated resource providers and

rated users . 86

1.3.7 Conclusion and Future Work 87

1.4 Sabotage Tolerance in Volunteer Computing 89

1.4.1 Research objective . 90

1.4.2 Background . 92

1.4.2.1 State-of-the-art 93

1.4.2.2 Sabotaging behaviors 95

1.4.3 A collusion-resistant sabotage tolerance protocol 99

1.4.3.1 Overview . 100

1.4.3.2 Statistical modeling of the voting behavior 101

1.4.3.3 Spotting out naive saboteurs (M1 or M3) 105

1.4.3.4 A general sabotage tolerance protocol 108

1.4.4 Results and discussion . 110

1.4.4.1 Results . 110

1.4.4.2 Discussion . 116

1.4.4.3 Classification alternatives 118

1.4.5 The Maximum Independent Set Approach 121

1.4.6 Conclusion . 123

1.5 SLA Negotiation in Competitive Computational Grids 125

1.5.1 Research objective . 125

1.5.2 Background and related work 128

1.5.2.1 SLA negotiation formalization 128

1.5.2.2 SLA negotiation in computational grids 131

1.5.2.3 The Bayesian learning agent 135

vi

CONTENTS

1.5.2.4 Why opponent learning agents for SLA negotia-

tion? - an economic point of view 139

1.5.3 The time-constrained negotiation strategy 140

1.5.3.1 The General Framework 140

1.5.3.2 Performance optimization 145

1.5.4 Experimental Results . 146

1.5.4.1 AgentFSEGA against non time-constrained nego-

tiation strategies 146

1.5.4.2 AgentFSEGA’s performance analysis 149

1.5.5 Conclusions and future work 155

1.6 Conclusion . 156

2 Career Development Plan 158

2.1 Teaching directions . 158

2.1.1 Status Quo . 159

2.1.2 Didactic proposals . 166

2.2 Research directions . 170

2.2.1 Research group on automated collaborative systems 170

2.2.2 Efficient resource management in heterogeneous clouds . . 171

2.2.2.1 Problems . 171

2.2.2.2 Objectives . 177

2.2.2.3 Impact . 178

2.2.2.4 Methodology . 179

References 181

vii

List of Figures

1.1 Fragment of a Chord ring [Moca, 2010] 9

1.2 VBE and VO Models . 68

1.3 Reputation when the issue is delivered uniformly distributed in a

variation band . 74

1.4 Reputation when there is a decay in the QoS delivery 74

1.5 Reputation deviation used to assess the confidence in the reputa-

tion value . 75

1.6 Reputation Management in VOs 79

1.7 Usage Scenario of the Reputation Management System 82

1.8 Comparing reputation-based scheduling with round-robin: com-

pletion time . 84

1.9 Comparing reputation-based scheduling with round-robin: welfare 85

1.10 Time consumption efficiency for a system with malicious users. We

allowed 20% of users to be malicious and having a sabotage rate

of 20%. 86

1.11 Reputation based scheduling with user and resource reputation.

We allowed 20% of users to be malicious and having a sabotage

rate of 20%. 87

1.12 Error rates comparison between various types of malicious workers

against simple replication . 98

1.13 Relative effectiveness comparison between various types of mali-

cious workers against simple replication 99

1.14 Comparison of conflicting voting pools 101

viii

LIST OF FIGURES

1.15 Theoretical distribution functions Fv for various population struc-

tures . 104

1.16 Distribution functions for a population with M1 and M2-type sabo-

teurs . 106

1.17 Distribution function and second order differences for the ~t values 108

1.18 Results obtained for a population structure with only honest and

M1-type nodes . 111

1.19 Results obtained for a population structure with only honest and

M2-type nodes . 111

1.20 Results obtained for a population structure with honest, M1 and

M2-type nodes, M1-type workers being in a small (f1 = 0.05) pro-

portion . 113

1.21 Results obtained for a population structure with honest, M1 and

M2-type nodes, M1-type workers being in a medium (f1 = 0.2)

proportion . 113

1.22 Results obtained for a population structure with honest, M1 and

M2-type nodes, M1 -type workers being in a large (f1 = 0.4) pro-

portion . 114

1.23 Results obtained for a population structure with M3-type nodes

and various naive rates, M3-type workers being in a small (f3 =

0.05) proportion . 114

1.24 Results obtained for a population structure with M3-type nodes

and various naive rates, M3-type workers being in an average (f3 =

0.2) proportion . 115

1.25 Results obtained for a population structure with M3-type nodes

and various naive rates, M3-type workers being in a large (f3 = 0.4)

proportion . 115

1.26 Classification error rates for k-means clustering procedure against

the statistical approach for various population structures 120

1.27 Error rates of the ST protocol when using k-means clustering

procedure against the statistical approach for various population

structures . 120

1.28 The votes against graph . 122

ix

LIST OF FIGURES

1.29 Comparison between: (1.29a) a negotiation game between non-

intelligent agents, and (1.29b) a negotiation game with intelligent

agents that learn the opponent’s profiles 140

1.30 AgentFSEGA against itself . 147

1.31 AgentFSEGA against Bayesian on the SON domain 148

1.32 AgentFSEGA against ABMP on the SON domain 148

1.33 AgentFSEGA against Bayesian on the small engineered domain . 149

1.34 AgentFSEGA against ABMP on the small engineered domain . . 150

1.35 SLA search cloud for several negotiating domains 152

1.36 AgentFSEGA performance relative to the Kalai-Smorodinsky so-

lution of a particular negotiation game. 153

1.37 AgentFSEGA against itself on the travel domain. 154

1.38 AgentFSEGA against Agent K itself on the travel domain 154

2.1 The study plan for the Bachelor program in Business Information

Systems at BBU . 160

2.2 The study plans for the two master programs in Business Informa-

tion Systems at BBU . 163

2.3 An agent system deployed for managing a heterogeneous cloud

infrastructure . 173

x

List of Tables

1.1 Summary of comparison between reputation-based trust systems . 35

1.2 Parameters describing the population structure 102

1.3 Characteristics of several negotiation domains 151

1.4 AgentFSEGA against ANAC2010 agents. Columns represent the

opponent agents. Each row represents a role played by AgentFSEGA.151

xi

Chapter 1

Dependable Resource

Management Tools towards

Automated Collaboration in

Heterogeneous Computing

Environments

1

1.1 Introduction

1.1 Introduction

Peer-to-Peer systems represent one of the most dynamic and challenging research

area of distributed computing. With theoretical grounds on multi-agent systems,

P2P systems get closer to the practice, allowing large communities to automate

collaboration and deliver various services at low costs and good quality.

Agents are defined as computer systems capable of independent (autonomous)

action on behalf of their users or owners, figuring out what need to be done to sat-

isfy the design objectives, rather than constantly being told [Wooldridge, 2009].

The definition leads the research towards formal aspects of the intelligence, agent

research community being interested on formalizing the interaction, modeling

agent behaviors, devising intelligent algorithms and approaching pro-activity. By

contrast, in distributed computing a peer represents just another node with the

same rank with others. Peers interaction is practically modeled using the basic

client-server paradigm, a peer playing either the role of the client, either the role

of the server, without the requirement that some master (central) peer to coordi-

nate everything. P2P systems gained such popularity that they emerged to de-

liver various services. Initially, P2P communities gathered together to distribute

music; later they formed huge distributed file systems where everyone can store

and find various items from books, movies and others. Nowadays, P2P systems

represent the next step of the grid concept evolution [Foster and Iamnitchi, 2003],

peers delivering computing power besides storage. Desktop grids under the vol-

unteer computing paradigm fit exactly this latter approach, home Internet users

donating their computing cycles to world-wide distributed scientific projects.

In this context, one can note that distributed computing research community,

besides focusing on the practical implementation aspects of P2P systems, adopt

more and more ideas originating in the agent research field of artificial intelli-

gence. Peers are smarter and smarter, systems are delivering sophisticated ser-

vices, moving apart from the classical storage and computing power capabilities.

Everything become transparent under the umbrella of cloud computing, where

platforms, infrastructures and services are virtualized and delivered on-demand

to interested customers. Of course, with their increased usage and sophistication

2

1.1 Introduction

of the delivered services, various research problems sprinkled out, from the classi-

cal resource management problem towards how to face with malicious behaviors

of peers who are interested to benefit from the community without contributing.

If peers are autonomous and independent each of another, it came out that

they might exhibit self-interested behaviors, including undesired ones. Applied to

a computer system, dependability is defined as the trustworthiness of a computing

system which allows reliance to be justifiably placed on the service it delivers IFIP

Working Group 10.4 [1988]. To trust and rely systems and services offered on

the Internet by anonymous contributors, measures and controls must be in place.

Contributing to such systems shall assure the participants that they will get a

fair value back, thus proper designed resource management mechanisms should

exist. Thus, there is a large space to use game theoretical analysis for proper

design of such service-based P2P systems.

This thesis summarizes our main scientific contribution, spread over the last

years, after the completion of the PhD. While during our PhD research we ap-

proached and investigated tools towards automated collaboration inside agent

communities; with this research we stepped in the field of distributed computing,

approaching resource management in systems composed of anonymous contribu-

tors. We centered our contribution around systems with open participation, that

transparently deliver services under the umbrella of Service Level Agreements

[Andrieux et al., 2007]. Assuming that a P2P system deployed over Internet de-

livers some services and the system allows everyone (with various capabilities) to

contribute, we devised a reputation model for resource usage control and access

control in the system. Given that contributors are self interested and such a

system is organized as bargaining marketplace, we devised a bilateral negotiation

protocol towards service level agreements under time constraints. Approaching

the challenging field of volunteer computing and desktop grids, we were firstly to

define, model and propose a solution against colluding attackers.

Our contribution enlarges the developments of grid, P2P and service systems

economics. We took principles and concepts developed, formalized and analyzed

part of the economic theory and apply them in automatic systems. The main

characteristic is that our proposed methods are fully automated and let the sys-

tems using them to fulfill their requirements without the human intervention.

3

1.1 Introduction

When assessing the trust, our reputation model is based on the concept of util-

ity. Actors operating the service systems nodes need to define their goals and

let the utility reputation model to assess the others based on those goals. The

automatic SLA negotiation is strongly based on the strategic bargaining theory,

strongly encouraged by the definition adopted in the WS-Agreement-Negotiation

protocol [Waeldrich et al., 2011]. Peers are equipped with a learning techniques

and negotiate self-interested, given that they are able to express their preferences

over the negotiation solutions. When modeling the colluding malicious behavior

in desktop grids, nodes actions are observed on a time frame and a statistical

model is computed for each node. This statistical model allows the definition of

a clustering procedure, to extract out the majority of nodes that are behaving

honestly.

The content of the thesis is disseminated in prestigious world journals and

was presented at recognized conferences over Europe and USA. The reputation

model [Silaghi et al., 2007b] was firstly presented at the 1st CoreGrid symposium,

a premiere European event on Grid Computing for the dissemination of the re-

sults from European and member states initiatives as well as other international

projects in Grid research and technologies. Up to now, this model attracted 11

citations in ISI WoS and Scopus. The review of the reputation model [Silaghi

et al., 2007a] was initially published as a CoreGrid technical report and attracted

23 citations in ISI WoS and Scopus. In August 2008, at the end of the CoreGrid

FP6 project, it was ranked in the top 10 out of 178 technical reports of CoreGrid

by the number of downloads. The journal version [Arenas et al., 2010] published

in Security and Communication Networks at Wiley includes as an addition the

implementation of the model in the FP6 GridTrust project and experimentation

with access control. The sabotage tolerance model against collusion in desktop

grids [Silaghi et al., 2008a] was firstly presented at the PCGrid 2008 workshop

in conjunction with the prestigious IEEE IPDPS conference and next, it was ac-

cepted for publication in Journal of Grid Computing at Springer [Silaghi et al.,

2009]. The model attracted follow-ups, mentioning here the PhD thesis of E.

Staab, defended in 2010 at University of Luxembourg (citation in [Staab and

Engel, 2009]) and works done at INRIA Grenoble by Canon et al. [2010, 2011].

4

1.1 Introduction

We further contributed to the development of the Maximum Independent Set ap-

proach of colleagues from University of Coimbra, who got published in the Journal

of Parallel and Distributed Computing [Araujo et al., 2011]. The SLA negotiation

model under time constraints was entirely developed at Babeş-Bolyai University

of Cluj-Napoca. Initially [Silaghi et al., 2010], the model was presented at the

7th International Workshop on the Economics and Business of Grids, Clouds,

Systems, and Services GECON 2010 and the journal publication [Silaghi et al.,

2011] is with Future Generation Computer Systems journal at Elsevier.

This thesis develops as follows. In section 1.2 we define the concepts we are

dealing with, making a short introduction to P2P systems and their research

problems. Section 1.3 investigates reputation models proposed for grid com-

puting and propose an original utility-based reputation model to overcome the

problem of the subjective feedback. Section 1.4 defines the collusion sabotage

problem of the desktop grids and propose a statistical tool to fight against col-

lusion. With its follow-ups, the devised model tackle well both the Sybil attack

and the whitewashers, keeping the model assumptions to fit the practical realities

of the desktop grids. Section 1.5 presents a time constrained negotiation proto-

col to be applied for service level values negotiation in bilateral bargaining, with

self-interested peers. Each section first introduces its research question, next, it

presents some background conceptual definitions and the state-of-the-art related

work in the field and in its central part presents the scientific contribution val-

idated with experimentation and discussed against the research objectives and

state-of-the-art.

5

1.2 Background and Related Work

1.2 Background and Related Work

In this section we will introduce the main concepts used and developed part of our

scientific contribution. We will generally introduce P2P systems, as distributed

computer systems capable of delivering some services based on volunteer con-

tribution of participants. Next, we will introduce the Service Level Agreement

concept, that regulates the understanding between a service consumer and a

provider. Finally, we will shortly brief desktop grids, as a sort of P2P system

aggregating and delivering computational resources over a network.

1.2.1 P2P systems

According to Tanenbaum and van Steen [2001], a distributed systems is a collec-

tion of independent computers that appear to the users of the system as a single

computer. P2P systems do not have a clear definition. What is widely agreed,

is that a peer is just another node with the same rank with others, and sys-

tems composed on such peers do not have centralized single point of failures. In

general, P2P networks are formed as overlays on the Internet, being endowed

with several typical features like self-organization, distributed control and node

equivalence. Node equivalence means that each component of the system has the

same responsibilities, acting either as a client, either as a server, depending on

the context of the interaction. In general, P2P systems play the role of resource

sharing [Trunfio et al., 2007]. Accomplishing this goal, P2P systems resemble

with grid systems, which aggregate huge computing and storage resources and

offer them on demand to various applications.

At their beginning, P2P systems widespread on the Internet to distribute

copyrighted music files. File sharing was its main purpose. Next, peers grouped

together to contribute in volunteer computing projects by donating the idle time

of their desktop computers. Besides file sharing and distributed processing, now,

P2P systems represents the overlay to support various applications, like instant

messaging, voice-over-ip, managing and sharing information, collaborative devel-

opments etc. Nowadays, we can speak about P2P service systems [Milojicic et al.,

2003], where the SOA concept links together with P2P computing, services being

delivered on the top of P2P overlays.

6

1.2 Background and Related Work

P2P systems possess some desirable properties like decentralization, scalabil-

ity, cost and efficiency, pervasiveness, all of them accomplished with the intrinsic

design and functioning of such systems.

When speaking about P2P systems, several issues are of great importance, all

representing hot research topics:

• which is the structure of the P2P network and what mechanisms are in

place to keep this structure running?

• how resources are spread over the network, and which mechanisms are in

place to discover the resources?

• which principles govern the network to keep a fair balance between the

contribution and consumption of peers?

• what services are delivered by the system and whether some assurance

mechanisms are in place to have a warranty on (the quality of) the de-

livered services?

• is the P2P system vulnerable to malicious attacks and what mechanisms

are in place to defend the network from manipulation and sabotage?

Below, we will shortly approach them, giving an introduction to the main

concepts and developments of P2P research. For detailed surveys concerning

above-mentioned issues in P2P systems, the reader can consult Ciccarelli and

Lo Cigno [2011]; Meshkova et al. [2008]; Palomar et al. [2006]; Risson and Moors

[2006]; Trunfio et al. [2007].

1.2.1.1 Structuring P2P systems and discovering resources

Regardless their topology, P2P systems main goal is to store some information

and retrieve it in an efficient way. Given that all nodes in the system are po-

tential (service) providers, discovering the peer responsible for some information

represents the most important operation of a P2P network.

In general, P2P systems are split in two main categories: structured and

unstructured P2P systems. Structured P2P systems maintain a topology of the

7

1.2 Background and Related Work

peers, in the sense that a clear routing procedure is followed to reach a peer from

any part of the network. Besides, structured P2P systems control with strict rules

how the target information is distributed to peers or how peers contribute towards

the realization of the target service. Practically, each resource is identified by an

id and peers in the network are made responsible of knowing where are located the

resources within a subset of the id space. By contrast, unstructured P2P systems

let peers to enter the network at any point, allowing unstructured graphs to be

formed. There is no control regarding the peer a given resource is located.

Self-organization is a strong aspect of structured P2P systems, developed

protocols supplying with clear procedure about the re-organization of the network

when peers leave out. Besides, we describe in short, the most important P2P

topologies.

Structured P2P systems

Structured P2P systems maintain the rigid interconnection between peers using

the concept of Distributed Hash Table. DHTs are based on a hash function,

which, applied both to peers and their information, determines the place of the

peer in the linked network, as well the routing table for information search. In

general, DHT-based systems are designed to support a search performance of up

to O(log N) hops to match exact queries.

Chord [Stoica et al., 2001] was the first structured P2P system. It is based on

a hash function that distributes peers and their files in a m-bit key search space.

Peers are organized in a double linked circled list (as in figure 1.1) and each peer

stores the index of the files mapped by the hash function in a given interval of

the key space. The information lookup process is similar with a binary search,

delivering a performance of O(log N). Chord easily integrates new incoming peers

in the network. When joining, each peer is made responsible with a key space

interval and all information mapping there is moved to the new peer. When a

peer leaves the network, all its assigned keys are transfered to the successor peer

in the topology. The division of the key space in intervals assure load balancing,

as each peer is responsible for an equal number of keys, in probabilistically terms.

CAN [Ratnasamy et al., 2001] is another DHT-based P2P topology. It differs

from Chord by the fact that peers are arranged in a d-dimensional torus, each

being connected with its neighbor in each dimension, thus having O(d) neighbors.

8

1.2 Background and Related Work

Figure 1.1: Fragment of a Chord ring [Moca, 2010]

The d-dimensional key space is divided among the peers, each peer being respon-

sible for the keys corresponding to the points in its subspace. Information search

requests are forwarded among the d dimensions, and the search performance is

O(N 1/d). A joining peer contacts a peer already in the system who splits its

search space in two parts. Leaving the network works opposite, one neighbor

peer taking responsibility of the key subspace of the leaving peer.

Another approach is considered in Pastry [Rowstron and Druschel, 2001].

Each peer is mapped into a random node identifier of 128 bits. The structure of

the system is organizing peers in k circles, according with their nodeId. For search

routing, each peers maintain pointers towards at least one peer of each division

of its nodeId space. Each lookup message is directed to the peer whose nodeId

has the longest common prefix with the search key. Each peer of Pastry fingers

2k closest peers, thus, this scheme allows a piece of information to be located

in log N steps. Tapestry [Zhao et al., 2004] builds its structure similarly with

Pastry, but avoids load imbalances by publishing location pointers throughout

the network in order to facilitate routing to highly requested objects with low

network overhead.

Kademlia [Maymounkov and Mazieres, 2002] works somehow similar with Pas-

try. Each node is identified by a 160 bits key obtained by applying SHA1 hash

function. Each peer has at least one neighbor, with distance between keys from

2i and 2i + 1, 0 ≤ i < log N . Each peers maintain fingers to other k peers in

9

1.2 Background and Related Work

each bucket and each file is replicated on k peers closest to its key. A query is

routed by performing XOR on the requesting peer key and the lookup key and

forwarding the lookup query to the identified bucket. Kademlia was the first P2P

network to achieve world-wide scale deployment.

Other structured P2P systems are hierarchical, in the sense that they com-

plement the DHT-based structure with some hierarchy to isolate some nodes for

reasons like fault tolerance, improving bandwidth utilization, or speeding the

resource location. Cyclone [Artigas et al., 2005] forms subnetwork inside the

DHT, by dividing the ID of each node in two parts. Other approaches [Kaashoek

and Karger, 2003; WepiwÉ and Simeonov, 2006] exploit the properties of the De-

Bruijn graphs, creating co-centric additional rings in the DHT network. With this

enhancement, HiPeer locates a file in a number of hops equal with the number of

rings in the system.

Unstructured P2P systems

By contrast, unstructured P2P systems do not maintain a strict structure of

the network. Each peer joins in at some place, being randomly connected with

other peers in the network. We have seen previously, that the some structure

helps either to interconnect the peers with strict networking rules, either to fa-

cilitate information retrieval. In unstructured networks, in general, no particular

knowledge about information location exists, peers finding their relevant piece of

information by queries flooded on the network.

Napster1 was considered the first unstructured P2P network, although its

principle is quite different. It had a central server that maintains a directory

with the location of every file shared by the participating peers. This central

index does not scale and, is not a characteristics of the P2P system. Kazaa2

and Gnutella3[Adar and Huberman, 2000] are examples of unstructured P2P

networks, each peer maintaining the addresses of some neighbors. For information

location, each query pass firstly to the neighbors, and, then from neighbors to

neighbors flooding the network. The query is tagged with a Time-to-live (TTL)

1http://www.napster.com/
2http://www.kazaa.com/
3http://rfc-gnutella.sourceforge.net/

10

1.2 Background and Related Work

parameter, which decreases as the query passes one hop. When the TTL reaches

0, the query is not further forwarded.

The big problem of the unstructured networks is exactly this query flooding,

which is very expensive. Research focused to improve this with a number of

approaches. Dynamic querying[Fisk, 2003] initially launch the query only to a

subset of neighbor peers, with a low TTL. Only if the requested file is not found,

then the query is propagated to a bigger subset of peers, with a higher TTL.

Random walk means that each query is forwarded to a randomly selected subset

of the neighbors of the current peer. With this technique it is impossible to

know in advance how many hops are needed to identify a resource, or even if a

resource is identified. Despite this limitation, it was proved that random walk

is a promising technique [Fletcher et al., 2005] to solve the search problem in

unstructured P2P system. Random walk performance is heavily influenced by

the topology of the unstructured network and the load of every peer. DANTE

[Rodero-Merino et al., 2009] was proposed as a self-adapting P2P system that

changes the topology on the fly, given the actual load of the network, such that

to enhance the performance of the random walk search. Random walk can be

improved by statistical information [Lv et al., 2002], or by the incorporation of

the semantical information [Garcia-Molina and Crespo, 2003].

Super peer approaches

Structured P2P systems have the advantage that every resource stored by the net-

work can be retrieved and no false negatives (a false negative response is issued

when the protocol fails to identify a resource present on the system). But, the

main disadvantage is that they do not encourage complex queries (e.g. based on

keywords), are re-configuring the structure in the presence of high churn is costly.

On contrast, unstructured P2P systems accommodate efficiently very volatile

nodes, although queries can produce false negatives. Pastry and Kademlia, pre-

sented above as structured P2P exhibit some characteristics of the unsupervised

P2P networks, as they present a query forwarding procedure originating in the

unsupervised broadcasting. Although, because of their structuring, we classify

them as supervised networks.

Super peer approaches consider some nodes exhibiting some privileged func-

tionalities, acting as central servers for peers linked to them. In general, super

11

1.2 Background and Related Work

peer approaches have two layers: a layer representing an overlay of the super

peers and the bottom layer with the peers linked in an unsupervised fashion to

the super peers. The super peer overlay might be organized like a supervised P2P

topology. Such networks exhibit the loose architecture of unsupervised topolo-

gies, while supporting partial matching queries and showing a good scalability of

the system. A problem of the super peer approach is the clustering procedure

adopted in order to elect the privileged peers.

A two layer architecture is proposed in Talia and Trunfio [2005] for resource

discovery in OGSA compliant grids. The upper layer consists of peer services

helping the resource discovery and contact services allowing peer services to or-

ganize themselves in a structured P2P network. Basic index services as supplied

by the Globus-enhanced virtual organizations, are residing on the lower level and

are linked to the peer services. A P2P grid information service is designed in

Mastroianni et al. [2005]. The super peer node acts as a centralized server for

some regular peers and the super peers organize themselves in a P2P overlay at

the higher level. The super peer stores the metadata of the local physical orga-

nizations composed of grid nodes from some administrative domain. It is also

responsible with the communication with other physical organizations. Another

somehow similar super peer system is devised by Puppin et al. [2005]. Marzolla

et al. [2007] devise a tree-shaped overlay topology and focuses on the routing

index in order to efficiently route queries and update messages in the presence of

highly variable data.

We note that the hybrid approaches arise with the emergence of complex

P2P networks, peers supplying other services than information storage. Our

scientific contribution will evolve around such service-based P2P networks. But,

we choose not to focus on the topology; thus, in general, we will assume that

our P2P systems are unsupervised organized. While network topology facilitates

the resource discovery, in our research we will be interested in designing the

interaction protocol between peers and the rules governing the service delivery.

12

1.2 Background and Related Work

1.2.1.2 Economics of P2P systems and sabotage

In general, P2P systems - regardless of their topology, are open system. Interested

actors can join the network and benefit from the participation. In general, in P2P

communities, there is no supervisor to control the actions happening inside the

network. Further, all peers are assumed to contribute. If peers participation

decreases and there is no new information of interest spread on the network,

the network activity might diminish up to the network dismissal. The lack of a

centralized supervision is a beneficial property of such networks, because it assures

scalability. But on the other side, actions of all peers become hidden. Thus, it

come out the question about how to monitor the network evolution and how to

loosely impose cooperation, while each peer might behave self-interested. As we

will see in this subsection, the intrinsic characteristics of P2P systems leave space

for various attacks. How robust are the P2P systems to those attacks? In order

to attract participants, such systems should possess some incentive rules. On one

side, these economic-based rules should attract participants to the network; on

the other side they should protect the participants from being exploited - thus

assuring the long lasting of the system. In this subsection, we present several

economic-based ideas employed in P2P systems with this respect.

The most popular P2P system organized on some economic basis is BitTor-

rent [Cohen, 2003]. BitTorrent addresses the problem of fairness identified in

Gnutella [Adar and Huberman, 2000] as free riding, where peers join the network

only to download files, without contributing. While in such P2P networks, the

total download rate across all downloaders must, mathematically be equal to the

total upload rate, to make peers happy, individual download rates should be pro-

portional with the individual upload rates. In BitTorrent, this rule is achieved

with the choking algorithm, peers reciprocate uploading to peers which upload

to them, with the goal of, at any time, having several connections which are ac-

tively transferring in both directions. This is a sort of barter; and the widespread

adoption of BitTorrent proves the solidity of this simple economic principle.

Free riding represents a usual incentive for peers. In general, contributing

to the network costs, thus, there is a strong disincentive to share. We identify

here the strong fundamental tension between individual rationality and collective

13

1.2 Background and Related Work

welfare, largely analyzed by the economic theory [Kreps, 1990]. We have seen

that the BitTorrent approach to free riding is the tit-for-tat strategy. In P2P

streaming applications, Chu et al. [2004] propose a taxation scheme in which

resource-rich peers that contribute with a larger bandwidth subsidize for the

resource-poor peers. Here, the designer is interested to keep the resource-poor

peers1 participating in the system and the taxation model redistributes the total

welfare. Habib and Chuang [2004] propose a rank-based peer selection mechanism

in which contributors are rewarded with flexibility and choice in peer selection.

Thus, free riders receive less choice for peer selection, thus, they will not enjoy

the service for which they joined the network.

A method widely approached especially in service-based P2P systems for trad-

ing multiple resource types represents the introduction of tokens or the design of

a currency. We mention here KARMA [Vishnumurthy et al., 2003] where each

participant of the system has an associated single value named karma. A set of

privileged nodes named bank-set keep the record of karmas. The karma of one

node is increased when resources are contributed and decreased when resources

are consumed. A transaction is not allowed to proceed if the consumer has less

karma than it takes to make the payment for the resource involved. Thus, karma

is similar with the owned money and regulates the transactions happening on

the network. In Tycoon [Lai et al., 2005], resource-allocation is done using an

economic principle. Each host runs an auctioneer and consumers actively bid

for resources, committing credit for them. In both approaches mentioned above,

only one currency is established for the whole network. i-WAT [Saito, 2006]

proposes the model of multiple currencies regulating the exchanges happening in

P2P systems with various sorts of services delivered. In such networks, a peer can

exchange capability that it does not immediately need for an alternative service.

Thus, it enhanced a better resource sharing and utilization. We contributed the

literature in this respect, by proposing that Service Level Agreements - described

in section 1.2.2 to represent the exchange token [Petri et al., 2011]. Jain et al.

[2008] present a critical survey about micropayment schemes in P2P systems.

Peers interaction and service exchange can be modeled with the help of game

theoretical concepts. In the classical Prisoners’ Dilemma game, mutual cooper-

1which accounts for more than 80% of total number of peers

14

1.2 Background and Related Work

ation is the dominant behavior on the long term [Fudenberg and Tirole, 1991].

Thus, it make sense that the tit-for-tat strategy to work well and various long-

term established communities to be able to resist based on the principle of the

direct reciprocity. Although, because of asymmetry on peer interests and of ca-

pabilities, and due to the fact that P2P communities are in general very large

with huge populations of peers that interact only infrequently, cooperation based

on direct reciprocity might be difficult to achieve.

In P2P networks, indirect reciprocity works also well. We mention here the

notion of reputation, in-depth analyzed in section 1.3. Reputation is earned by

peers after cooperation in bilateral transactions, behavior reported by third par-

ties. In subsection 1.3.2.1 we performed a detailed review of reputation models,

including how this concept is used in conjunction with P2P systems. Reputation

represents one of our major areas of scientific contribution described in this thesis.

All these economic models are devised for the long lasting of the P2P com-

munity. But, in order to prove the effectiveness of such a model, one should show

how the model resists to various attacks, described below.

Free riding, as defined above represents the main threat to P2P systems. In

general, self-interested peers want to consume services from P2P systems without

contributing. Other attacks and exploits are also of interest.

First, in various economic-based schemes, peers are required to contribute in

order to gain benefits from the networks. Peers can collude in order to claim

that they received / contributed services from / to other colluders. Referring to

the Prisoner’s Dilemma mentioned above, many forms of collusion are possible,

including (i) false praise - falsely claiming defectors have cooperated or (ii) false

accusation - falsely claiming cooperators have defected. Collusion represents a

strong attack against reputation systems, because nodes from the group supply

false positive opinions between themselves. In general, collusion is favored by the

Sybil attack [Douceur, 2002] where one owner can join the P2P system under mul-

tiple identities. One can easily develop a Sybil attack in web-based P2P systems

where nodes are created based on email addresses. As indicated in subsection

1.3.2.1, several reputation models including EigenTrust [Kamvar et al., 2003] are

collusion resistant. As shown in section 1.4, on P2P equipped desktop grids, we

15

1.2 Background and Related Work

were the first to tackle the peer collusion problem and propose a practical solu-

tion. The algorithm tackling collusion in P2P desktop grids represent one of the

major scientific contributions of this thesis.

Whitewashing [Feldman et al., 2004] represents another powerful attack in

P2P system. After defecting, a whitewasher leaves the system and comes back

with a new identity. This attack is very effective against P2P systems incorpo-

rating reputation models. In general, reputation is built based on the history of

the peer and assumes persistent identities. Thus, such a model can not distin-

guish between a legitimate newcomer and a whitewasher. Whitewashing raises

the question about how to interact with a newcomer? If always cooperating, this

behavior will be fully exploited by the whitewashers. If always defecting, this

would protect against whitewashers, but will introduce a barrier on the entry on

the network [Friedman and Resnick, 2001]. Our latest contribution [Araujo et al.,

2011] proposes a method against collusion that also prevents whitewashing.

In designing P2P systems and the interaction protocols between peers, re-

searchers should contribute with mechanisms that leads towards the stability of

the system and increased welfare in the society, in the conditions of the self-

interested behaviors of the peers. Such mechanisms should induce truthful reve-

lation of the peers’ profiles and truthful biding in resource allocation mechanisms.

We have contributed in this direction [Silaghi et al., 2011] by supplying a frame-

work to construct time-constrained SLA strategies, enabling peers to learn good

strategies for them, while maintaining a fair resource distribution at the global

societal level.

1.2.2 Service Level Agreements and Service-based P2P

Systems

Initially, P2P systems were created for the distribution of files over the Inter-

net. During last years, P2P systems evolved towards Service-oriented systems in

which nodes interact for various service deliveries. The concept of Service Level

Agreement (SLA) regulates the service delivery in service-oriented architectures

(SOA). During this P2P thesis, SLAs represent a central concept, being the ob-

16

1.2 Background and Related Work

ject of the peers’ interaction. In this subsection, we will conceptually introduce

the service level agreements and the domain of service P2P systems.

Service Oriented Computing is a paradigm that utilizes services as central

elements enhancing the development of distributed systems in heterogeneous

environments [Georgakopoulos and Papazoglou, 2009]. Within this context, a

Service-oriented architecture (SOA) is a collection of services that communicate

with each other and cooperate for creating the applications addressing various

needs of organizations. In a SOA, services are technologically independent and

they encapsulate an application being delivered as a service for others needs. As

indicated in Barry [2003], a SOA is characterized by the following principles:

• logical view: the system consists of various programs, databases and busi-

ness processes

• message orientation: each service consumption involves a message exchange

between at least two entities: the service provider and the consumer

• granularity: one service can define a number of operations and complex

messages at a certain granularity

• network orientation: services are exchanged over a network, e.g. in a P2P

system

• platform neutral: services are described in platform neutral standards like

XML and a service can be consumed in a platform of different sort than

the one of the service provider

A service identifies a special resource representing the capability of performing

tasks with a coherent functionality. When the service delivery happens on the In-

ternet, we speak about Web services. According to Birman [2005], a web service

works as a software system that can be accessed by the users over the Internet.

According to W3C consortium [Austin et al., 2004], a web service is defined ”as

a software system identified by a URI, whose public interfaces and bindings are

defined and described using XML. Its definition can be discovered by other soft-

ware systems. These systems may then interact with the Web service in a manner

17

1.2 Background and Related Work

prescribed by its definition, using XML based messages conveyed by Internet pro-

tocols”.

A service has the following properties [Rosen et al., 2008]: service interface, in-

terface documents, service policies, quality of service (QoS), performance. In our

scientific contributions, we will be focusing especially on quality of service prop-

erty. The QoS is described within the service level agreement statement (SLA),

which represents a contract between the service provider and the consumer and

defines the level of the service properties to be delivered. Gridipedia supplies a

good description for the service level agreement concept, description adopted by

the FP7 S-Cube Network of Excellence1: ”Service Level Agreement is a formal

written agreement made between two parties: the service provider and the service

recipient. The SLA itself defines the basis of understanding between the two par-

ties for delivery of the service itself. The document can be quite complex, and

sometimes underpins a formal contract. The contents will vary according to the

nature of the service itself, but usually includes a number of core elements, or

clauses. Generally, an SLA should contain clauses that define a specified level

of service, support options, incentive awards for service levels exceeded and/or

penalty provisions for services not provided. Before having such agreements with

customers the IT services need to have a good quality of these services, Qual-

ity management will try to improve the QoS, whereas the SLAs will try to keep

the quality and guarantee the quality to the customer”. We formally approached

SLA-regulated open environments by defining a reputation model for SOA archi-

tectures [Silaghi et al., 2007b], fully described in section 1.3. The formalization of

the SLAs in terms of economic theory is found on subsections 1.3.4 and 1.5.2.1.

In Web-based environments, OGF defined the WS-Agreement protocol [An-

drieux et al., 2007] as a language to describe the agreed service usage details.

The SLA description includes the Service Level Objectives, which in fact rep-

resent the QoS properties. In environments based on WS-Agreement described

contracts, SLO negotiation is envisaged as a bilateral offer-counteroffer message

exchanges; thus with strong grounds on the economic theory of service exchange.

WS-Agreement Negotiation protocol [Waeldrich et al., 2011] describes in detail

1http://www.s-cube-network.eu/km/terms/s/service-level-agreement# consulted on 23

April 2012

18

1.2 Background and Related Work

how this conversation between a provider and a consumer should happen. We

contributed the scientific literature in this domain by proposing a particular ne-

gotiation behavior [Silaghi et al., 2011], given that time constraints restrict the

negotiating agents. The SLA negotiation setup is described in subsection 1.5.2.1

and subsection 1.5.2.2 details about scientific contributions regarding SLA nego-

tiation in computational grids.

Besides WS-Agreement widely used in the Web environment, other formaliza-

tions exist for SLAs, including SLAng [Lamanna et al., 2003], Rule-based Service

Level Agreement [Paschke, 2005] and Web Service Level Agreement [Ludwig et al.,

2003].

In the last years, P2P systems went away from its simple file distribution role.

Nowadays, various services are delivered with the help of P2P systems, including

computation power, messaging, VOIP, video streaming and others. QoS plays a

fundamental role in such systems and, in general, SLAs regulate the peers inter-

actions. Among the first service-based P2P systems, we mention the desktop grid

platforms like Seti@Home, described in more detail in subsection 1.2.3, the I-Way

system [DeFanti et al., 1996] which enables researchers to use multiple intercon-

nected supercomputers and advanced visualization systems to conduct large scale

computations, the FIPER environment [Sobolewski, 2002] which describes a net-

work of interconnected services hiding legacy applications and programmed with

object-oriented Java abstractions. Goel et al. [2007] describe a service based P2P

overlay allowing mapping a federated services into business processes. Various

software tools allow easy programming and deployment of systems based on bilat-

eral service-based interaction. We mention here toolkits like JXTA [Gong, 2001],

Jini [Newmarch, 2006], or the widely used web service concept.

Regarding our concern, P2P service systems represent the proper environment

for allowing open and wide participation, representing the fertile soil for plant-

ing economic theory principles in the design of distributed computer systems.

As indicated in Krishnan et al. [2006], the main economics issues of interest in

service-based P2P networks represent the incentives for participation, user behav-

ior and motivation, reputation and trust and the intellectual property. Incentives

are strongly related with the free-riding behavior analyzed previously. Either

19

1.2 Background and Related Work

pricing resources, or using a taxation scheme or micropayments could represent

a solution. Or, when pricing is not effective because of peers anonymity, quality

of service regarding the delivery might represent an alternative. User behavior

represents a well-studied research question in such networks. In general, users

are self-interested, and network mechanism design should induce a community

accepted behavior and exclude out of the network the saboteurs. Sabotages can

happen, mostly within the standard behaviors explained in the previous subsec-

tion, but, for every network protocol, a full game-theoretical analysis is a valuable

contribution. As we will see in section 1.3 trust and reputation is one of our major

concern.

Service based P2P systems are found as effective alternatives for increasing the

satisfaction of large consumer communities. Li and Lee [2010] show that service

quality of peer-produced services increases with the heterogeneity of the partici-

pants and with their number. Thus, it is worth studying issues concerning P2P

systems, as peer-generated content is a valuable asset on nowadays computing.

1.2.3 Desktop Grids

This subsection will introduce the topic of desktop grids. Desktop grids deployed

over Internet represent a space where anonymity and lack of control can induce

malicious behaviors. Our scientific contribution in desktop grids advances the

state-of-the-art regarding sabotage [Domingues et al., 2007]. In relation with

the rest of the thesis, desktop grids can be considered as P2P systems, where

peers contribute individually with computing power. Further, P2P technologies

might be employed in desktop grids to leverage some drawbacks, like the cost of

data distribution. In this respect, our results were among the first to link the

problem of sabotage with the problems induced by the usage of P2P concepts. In

this subsection, we will shortly describe the basic concerns in desktop grids and

volunteer computing, with a emphasis on P2P-related aspects.

The last decade we faced increased computing requirements by complex ap-

plication, resulting a huge development of high performance computing. HPC

is primarily supported by classical grids systems [Foster et al., 2001], in gen-

eral hosted by universities and research centers. Grids require huge spendings in

20

1.2 Background and Related Work

computer hardware and, to manage and use such systems, one needs specific IT

support and good knowledge of computing. Desktop grids emerged as a cheap

alternative to classical grid systems, by harnessing the idle computing power of

home desktop computers. The Condor project1 [Thain et al., 2005] developed

at University of Wisconsin-Madison represents the first system to aggregate col-

lections of distributively owned computing resources. Bayanihan computing pro-

posed by Sarmenta and Hirano [1999], BOINC [Anderson, 2004], Entropia [Chien

et al., 2003], XtremWeb [Cappello et al., 2005], GridSAT [Chrabakh and Wol-

ski, 2006] or Ourgrid [Mowbray, 2007] represents other systems organized on the

same principles: aggregating desktop computing power from various geographi-

cally distributed locations, including Internet. We need to make a first distinction

in what regards desktop grids. If the computing power is voluntarily donated in

the system by (anonymous) Internet users, we speak about volunteer computing.

If the desktop grid platform is installed on the computers from an organization

and the origin of aggregated resources is controlled, we speak about enterprise

desktop grids.

Similar with grid systems, the main usage of desktop grids is in scientific

computing. In general, desktop grids were preferred by researchers that were

not owning a budget to afford a grid. Nowadays, we notice the spread of grids

and desktop grids to supply the computational power required by business ap-

plications and even the integration between desktop grids and grids or clouds.

We mention here (i) the FP7 EDGeS project2 that created an integrated grid in-

frastructure by seamlessly integrating various desktop grid solutions (like BOINC

and XtremWeb) with EGEE type of service grids and (ii) Aneka3 that allows pro-

visioning of private cloud resources including desktop, cluster and virtual data

centers and public clouds to various computing needs.

Bag-of-tasks represents the basic computing model adopted by desktop grids.

The computing project should be split in multiple independent tasks that can

be parallel deployed on the desktop resources. In general, those tasks should not

1http://research.cs.wisc.edu/condor/ consulted on 25 April 2012
2http://edges-grid.eu/ consulted on 25 April 2012
3http://www.manjrasoft.com/products.html

21

1.2 Background and Related Work

communicate between them. Thus, the architecture of a desktop grid is master-

worker, with a master owning the bag-of-tasks and distributing the tasks to the

workers installed on the desktops. The scheduling process can be of two sorts:

(i) push: where the master initiate the scheduling process and (ii) pull : where

the ready workers initiate the scheduling process by asking the master for new

tasks. Nowadays, desktop grids become ready for novel computing paradigms,

including Map-Reduce [Marozzo et al., 2011; Tang et al., 2010; White, 2009].

The classical bag-of-tasks model assumes that each task contain its data

and tasks do not communicate between them. However, in scientific comput-

ing, parameter-sweep applications are very popular. In fact, such applications

represent experiments on a set of data, run with varying input parameters. If the

dataset is big, distributing it to the workers might represent a problem, if the bag-

of-tasks model is employed as-it-is. The data distribution problem is similar with

the one that favorized the popularity spread of BitTorrent, which leveraged the

bandwidth costs from the seeders to the shoulders of the downloaders. In desktop

grids running parameter sweep applications, would make no sense to deliver the

same (in general big) amount of data with every task scheduling. Thus, solutions

for clever data distribution and wise scheduling are requested. Using BitTorrent

represents an affordable alternative for data distribution Fedak et al. [2008], and

this solution represented a first step towards inter-joining the desktop grids with

classical P2P systems. Nowadays, a lot of desktop grids projects are organized

using P2P principles, in various areas, including architectural design, user man-

agement, resource management - including identification, monitoring, discovery

and utilization, and security and reliability management. A full taxonomy of

peer-to-peer desktop grids was developed by Zhao et al. [2011].

Below, we mention several approaches employing P2P concepts in desktop

grids. Cohesion [Schulz et al., 2008] uses a P2P concepts and a flexible archi-

tecture in order to deal with the high volatility of desktop grid nodes. It is

programmed in JXTA [Gong, 2001] and employs an unstructured P2P model for

flexible task migration and load balancing. CCOF [Zhou and Lo, 2004] organizes

nodes in a CAN-based DHT according with their time zone. CCOF scheduler

aims to benefit from the lower workload of the desktop grid nodes during the

night time in order to handle deadlines for the bag-of-tasks projects. Ourgrid

22

1.2 Background and Related Work

[Mowbray, 2007] groups users in communities. As everyone can join the system

to contribute and benefit, in order to prevent free riding, Ourgrid uses a recip-

rocation method described in Andrade et al. [2007]. PeerStripe [Miller et al.,

2007] uses P2P routing to devise a self-organizing storage system for managing

large data files around nodes in a desktop grid. Mainly, it addresses the same

data distribution problem like Bitdew [Fedak et al., 2008]. Another solution to

data distributed was given part of the FP7 EGDeS project by Kelley and Taylor

[2008], proposing the ADICS framework. Files are stored and replicated on peers

and a simplified Peer-to-Peer middleware manages the underlying unstructured

overlay.

In our scientific contribution we approached volunteer computing desktop

grids. While anonymous Internet users contribute voluntarily to such desktop

grids, it appears the problem of sabotage. Initially, sabotage was approached

within the master-worker model under the bag-of-tasks abstractions, considering

that worker nodes do not communicate between them. Our scientific contribu-

tion was among the first to consider that nodes can communicate between them

and exhibit coordinated behaviors, like results collusion. We postpone the dis-

cussion about the sabotage problem in desktop grids up to section 1.4, where we

present our results and in subsection 1.4.2 where we introduce related work in

this respect.

23

1.3 Reputation Management

1.3 Reputation Management

In this section we present the reputation model we designed for dealing with au-

tonomous entities in collaborative computing. Initially, the model was devised

for service oriented computing [Silaghi et al., 2007b]. Next, the model was in-

corporated in a larger mechanism for virtual organization formation, allowing

collaboration between entities in virtual breeding environments [Arenas et al.,

2010]. Reputation helps in providing a mechanism for service provider selection

and usage control.

In collaborative systems, a set of organizations shares their computing re-

sources, such as compute cycles, storage space, or on-line services, in order to

establish Virtual Organizations aimed at achieving common tasks. The forma-

tion and operation of Virtual Organizations involve establishing trust among their

members and reputation is one measure by which such trust can be quantified and

reasoned about. We contribute to research in the area of trust for collaborative

computing systems by presenting a model for reputation management for Grid

Virtual Organizations that is based on utility computing and that can be used to

rate users according to their resource usage and resources and their providers ac-

cording to the quality of service they deliver. We also demonstrate, through Grid

simulations, how the model can be used in improving completion and welfare in

Virtual Organizations.

1.3.1 Research objective

In collaborative systems, a Virtual Organization (VO) can be defined as a set of

users and real organizations that provide resources, such as compute cycles, stor-

age space, or on-line services, for users to exploit for a common goal. Examples of

common goals include large-scale distributed computing research projects [Brit-

ton et al., 2009] or inter-organizational business applications such as Grid-based

supply chains [Blasi et al., 2008], among others. In such collaborative systems,

trust management is a fundamental problem as resource owners must share their

resources with unknown organizations as well as ensuring that all users abide by

the VO agreement to which the resources have been allocated.

24

1.3 Reputation Management

This research investigates how to exploit reputation systems for managing

Grid-based VOs. Reputation is one measure by which trust among different

members of a VO can be quantified and reasoned about. We focus on Grids

where the availability of resources and user tasks is highly dynamic, and both

resource providers and users have to compete for providing and employing re-

sources. Reputation systems are then used to manage reputation of resource

providers, according to the Quality of Service (QoS) provided, as well as reputa-

tion of users, according to their usage of resources.

Our reputation model is grounded on a utility based reputation model for

service computing. A reputation system gathers, aggregates and distributes feed-

backs about participants behaviour. The feedback is usually provided as an a

posteriori operation requiring human intervention. This way of building reputa-

tion is useful in semi-automated contexts, such as electronic marketplaces where

users rate sellers, but it becomes a limitation in fully automated contexts such

as Grid-based collaborative systems [Foster et al., 2001]. In some Grid applica-

tions, the resources allocated to a users job are unknown to the user, and such

allocation could change during the job execution, making it difficult to obtain

users feedback. The model introduced in Silaghi et al. [2007b] and presented in

this chapter overcomes that limitation by representing users feedback as utility

functions, which takes as input the information provided by trustworthy monitors

after a transaction. The utility functions reflect the satisfaction a user perceives

after consuming a service; this information is thus used to create reputation about

particular resource providers and users.

The main contribution is to study the impact of applying reputation in Grid-

based VOs. Resource-providers reputation can be used by resource brokers in

order to improve allocation of user tasks by selecting reputable providers. Con-

versely, users reputation can be used by resource providers in order to define

security level for users; low-reputable users would be assigned tight measures

when accessing a resource.

The structure of our presentation is the following. Section 1.3.3 describes our

model of VOs. Then, Section 1.3.4 introduces our reputation model, a utility-

based model that uses information provided by monitors to rate entities within a

Grid. Next, Section 1.3.5 presents the system architecture and gives an example

25

1.3 Reputation Management

of a usage scenario. Then, Section 1.3.6 shows experimental results and discusses

the use of reputation for both brokering and controlling resource usage. Finally,

section 1.3.7 concludes the scientific contribution and highlights future work.

1.3.2 Reputation-based trust management systems

This section reviews the main reputation-based trust systems. We directed our

analysis trying to identify how these systems fulfill the requirements of computa-

tional grids, anticipating a further inclusion of reputation-based technologies for

bringing trust in computational grid systems. We analyze a wide area of devel-

opments, from reputation systems used in e-commerce to systems coming from

agent research, P2P and Grids.

Trust and reputation systems have been recognized as playing an important

role in decision making in the Internet world [Grandison and Sloman, 2000; Jøsang

et al., 2007]. Customers and sellers must trust themselves and the services they

are offered. Regarding the grid systems, the fundamental idea is that of resource

sharing [Foster et al., 2001]. The grid research was initiated as a way of sup-

porting scientific collaboration, and grid systems were mainly used in e-science

projects. Entities from trusted institutions are put together to collaborate and

form the grid. However, when grid systems are intended to be used for business

purposes, it is necessary to share resources between unknown, un-trusted par-

ties. If one intends to generalize the wide usage of grid systems, the problem of

un-trusted parties should be considered. The grid definition of CoreGrid empha-

sizes the dynamic property of almost every issue: a fully distributed dynamically

reconfigurable, scalable and autonomous infrastructure to provide location inde-

pendent, pervasive, reliable, secure and efficient access to a coordinated set of

services encapsulating and virtualizing resources in order to generate knowledge.

As the CoreGrid survey material on trust and security acknowledges, modeling

trust is of great importance for the future developments of the grid [CoreGrid,

2005].

Reputation-based trust systems were mainly used in electronic markets, as

a way of assessing the participants. In a lot of such environments, they proved

effective as the number of participants was large and the system was running a

26

1.3 Reputation Management

sufficient amount of time [Resnick et al., 2000]. But, there are still a lot of issues

under study as not everywhere reputation systems were fully effective.

In grid systems, usually trust is constructed and maintained through security

mechanisms [CoreGrid, 2005]. Technical advances go toward enabling one point

sign-on for an entity in the system, considering that the entities belong to some

generally trusted organizations. But, as the scope of grid enlarges to ubiquitous

and pervasive computing, there will be a need to assess and maintain the rep-

utation of entities, once they are allowed to participate in the grid. Our work

intends to evaluate the suitability of existing reputation management systems

with regard to the grid security requirements.

Several reviews addressed the problem of trust and reputation models for var-

ious domains. Grandison and Sloman [2000] survey several existing trust models

in 2000, focusing on Internet applications. The main contribution merit of this

paper is a good conceptual definition for trust and the establishing of some trust

properties. They do not address computational trust management models, while

they focus more on trust gained by certification. Reputation is not addressed in

this review.

Regarding trust in E-Commerce applications, Manchala [2000] evaluates some

trust metrics but they do not address the reputation problem. Before presenting

their developments for trust management through reputation, Zacharia and Maes

[2000] review some systems live in 2000 that address reputation management

in e-commerce sites. Regarding on-line trading environments, Dellarocas [2005]

analyzes reputation mechanisms from a game-theoretical point of view. He allows

opportunistic players to take part of the game and his analysis is fully based on

mathematics developments.

Suryanarayana et al. [2004] address the topic of peer-to-peer applications, an-

alyzing properties of reputation systems related with peer-to-peer requirements.

Jøsang et al. [2007] refer to the problem of on-line service provision, but they

address the topic of trust and reputation systems from a general point of view,

covering applications from both e-commerce and p2p. They analyze the com-

putational engines classified according with their category: simple summation,

Bayesian systems, discrete trust models, belief models, fuzzy models and flow

27

1.3 Reputation Management

models. Also, they describe some reputation systems live at the time moment of

the paper. They do not make clear which system to which category belongs to.

Sabater and Sierra [2005] review some works regarding reputation as a method

for creating trust from the agent-related perspective. They do not categorize the

described models, but they try to find how those models are related with some

theoretical requirement properties for reputation. The review of Ramchurn et al.

[2004a] considers also a multi-agent perspective while debating on the notion of

trust.

In section 1.3.2.1 we will develop the concepts of trust and reputation, estab-

lishing some desirable properties a reputation system should fulfill. These will be

the properties we will look for when analyzing a reputation system. These proper-

ties were extracted in close relationship with the requirements that grid imposes,

on the movement toward a widely used grid infrastructure. Section 1.3.2.2 de-

scribed the main advances in reputation research. We collect studies from a wide

area of computer science: multi-agent research, knowledge engineering, grid sys-

tems, learning, information retrieval, e-commerce, etc. Section 1.3.2.3 will shortly

point on the usage of reputation systems for enhancing grids with fault-tolerance

and to improve resource management. Section 1.3.2.4 will conclude this review

of reputation models.

1.3.2.1 Trust and reputation

This subsection defines the concepts of trust and reputation and identifies the

main properties that trust and reputation management should fulfill, considering

also the requirements imposed by the computational grid systems.

Trust

According to Gambetta [1988], trust refers to the subjective probability by which

an individual A expects that another individual B performs a given action on

which its welfare depends. This definition taken from sociology is very popular

in computer science today.

From the business point of view, the European Commission Joint Research

Centre defines trust as the property of a business relationship, such that reliance

28

1.3 Reputation Management

can be placed on the business partners and the business transactions developed

with them [Jones and Morris, 1999].

Marsh [1994] was one of the first to define the trust concept from a computa-

tional point of view. He takes the definition of Deutch [1962] which states that

trusting behavior occurs when an individual perceives an ambiguous path, the

result of which could be good or bad, and the occurrence of the result is depen-

dent on the actions of another person, the bad result being more harming than

the good result beneficial. If the individual chooses to go down that path, he

can be said to have made a trustful choice. Marsh agrees that trust implies some

degree of uncertainty and hopefulness or optimism regarding an outcome, being

subjective and dependent on the views of the individual.

A recent definition of trust is the one of Grandison and Sloman [2000]: the

firm belief in the competence of an entity to act dependably, securely and reliably

within a specified context.

Jøsang et al. [2007] makes a difference between reliability trust as a subjective

probability, defined according with Gambetta [1988] and the decision trust as

being the extent in which one party is willing to depend on something or some-

body in a given situation with a feeling of relative security, even though negative

consequences are possible.

Falcone and Castelfranci [2001] presents a cognitive view about trust, which

is applied in the context of task delegation. When delegating a task, an agent

a might evaluate the trust it places in another agent b, considering the different

beliefs it has about b: (1) the competence belief: b is competent to do the task, (2)

the disposition belief: b actually will do what a needs, (3) the dependence belief:

a believes at least that it is better to rely on b for the task than not to rely on it,

(4) the fulfillment belief: a beliefs that the task can be done, (5) the willingness

belief: b intends to do what it has been proposed to do, (6) persistence belief: b

is stable enough in this intentions, (7) the self-confidence belief: a should belief

that b knows it can do the task and (8) motivation belief: b has some motive to

help a.

The above cognitive approach is worth for consideration in grid systems as

a theoretical foundation for empowering grids with trust management, consid-

ering the task delegation and resource management requirements of grids. But,

29

1.3 Reputation Management

when implementing trust management mechanisms, a lot of studies employed the

subjective probabilistic view, as being more suited to a computational approach.

Reputation

Reputation is what is generally said or believed about a person’s or thing’s char-

acter or standing [Jøsang et al., 2007]. They argue that reputation is a mean of

building trust, as one can trust another based on a good reputation. Therefore,

reputation is a measure of trustworthiness, in the sense of reliability.

According to Abdul-Rahman and Hailes [2000], a reputation is an expectation

about and agent behaviour based on information about or observations of its past

behaviour.

This last definition emphasizes the two main sources for building the reputa-

tion of an entity: the past experience and the collected referral information. Yu

and Singh [2002] go further and identify the challenges a reputation management

system should address: (1) how an agent rates the correspondent based on the

past interaction history, (2) how an agent finds the right witnesses in order to

select the referral agents and (3) how the agent systematically incorporates the

testimonies of those witnesses.

Other authors argue that reputation is solely gathered from the social network

in which the agent is embedded [Sabater and Sierra, 2005]. Therefore, trust can

be built from (1) the confidence an agent derives from past interaction and (2) the

reputation the agent acquires from the social network [Ramchurn et al., 2004a].

The first source of trust is named direct trust while reputation represents an

indirect trust source.

We will allow reputation to be assessed both from past experience and re-

ferrals. Therefore, reputation-based trust systems can be classified in 2 main

categories: systems that use only direct trust measures and systems that use

both direct and indirect trust.

Properties of reputation-based trust models

Regarding grid systems, the CoreGrid survey material on Trust and Security

[CoreGrid, 2005] acknowledges about the importance of trust management in

grids and presents how trust is bring in using security issues. Up to date, repu-

tation based models are barely considered for classical grid systems. As the long

30

1.3 Reputation Management

term future of the grid is to provide dynamic aggregation of resources, provided

as services between businesses, new architectures and detailed mechanisms for

bringing together arbitrary resources are required. These architectures should

federate security and trust, as ones of the most significant issues [Ahsant et al.,

2006]. On the basis of the OGSA architecture [Foster et al., 2005],

• WS-Trust defines a protocol by which web services in different trust domains

can exchange security tokens for use in the WS-Security header of a SOAP

message.

• WS-Federation describes how to use WS-Trust, WS-Security and WS-Policy

together to provide a federation between security domains.

Therefore, in classical grids, trust is achieved through security mechanisms. At-

tempts like the ones of Jurca and Faltings [2005b]; Kerschbaum et al. [2006]; von

Laszewski et al. [2005] are among the few to use reputation tools for managing vir-

tual organizations as in grids. Other approaches ([Buchegger and Boudec, 2005;

Rebahi et al., 2005]) tackle mobile ad-hoc networks. But, the most ones ([Despo-

tovic and Aberer, 2005; Gupta et al., 2003; Jurca and Faltings, 2005a; Kamvar

et al., 2003; Singh and Liu, 2003; Xiong and Liu, 2004; Zhao et al., 2005]) address

resource management as in P2P applications.

These attempts are mainly based on the developments and requirements iden-

tified in P2P systems, as P2P are the models most closed to the fully dynamic

and distributed resource management requirements envisioned by the future grids.

Several properties are common to most reputation-based trust models, without

any regard of their applicability:

• The computational model: Because grids are based on the distributed com-

putational model, the first property of interest is if the trust mechanism

is centralized or decentralized. Centralized models have the disadvantage

of a single-failure point, therefore, regarding desktop grids, decentralized

systems would be preferable. In classical grids, where security is achieved

through certificates and central certification authorities exist, a centralized

31

1.3 Reputation Management

model could also be of interest. In such systems, one can think to a repu-

tation service in order to be interrogated about the reputation of a user or,

more generally, of a resource. This reputation service in this case is a point

of centralization.

• Metrics for trust and reputation: when referring to a metric for trust and

reputation we consider the value that express the reputation (and trust)

of an entity as provided by the reputation mechanism. We must make

a distinction between the reputation value of an agent and the feedback

one is required to provide at the end of a transaction. Continuous metrics

are considered more expressive than discrete ones. Usual, these values are

scaled between -1 and 1, or between 0 and 1. If the reputation scheme

uses values scaled between 0 and 1 these values can have the meaning of a

probability.

• Type of reputation feedback: reputation information might be positive or

negative one. Some systems are based on collecting both type of information

with regard to an entity, while other systems are based only on negative /

positive information. Regarding an accomplished transaction, the reviewer

can supply with binary, discrete or continuous values. Again, continuous

values are more expressive but for the sake of simplicity, a lot of approaches

use discrete feedback and later on aggregates this feedback in continuous

reputation or trust.

• Reliability: the trust model should help the users to defend themselves

against malicious information, including trust values propagated by other

users into the system. The system is reliable if this property is accom-

plished. Almost all researchers reported that their reputation-based system

is reliable for their specific problem under study.

With regard to P2P applications, the following properties might be of interest

[Suryanarayana et al., 2004]:

• Local control: in decentralized applications, data are stored at various nodes

in the system. As global trust might be stored at the entities in the system,

32

1.3 Reputation Management

is important not to allow those entities to change the trust and reputation

values they maintain. Local control property will have the value yes for

those models accomplishing this property.

• Bandwidth cost: in P2P applications, bandwidth is of great importance,

as peers communicate via message transfer. In a reputation-based trust

system, peers might exchange reputation information, which can increase

the bandwidth cost of the network. We desire to have the lower possible

bandwidth cost. When a referral network is used to acquire reputation

information and if a P2P distributed approach is considered for data storage,

the bandwidth cost is increased.

• Storage cost: in a decentralized architecture, the nodes on the grid store

trust information about other nodes. One would desire to have as few as

possible data replication, and therefore, the storage at each node for trust

information should be as less as possible. In a centralized setup, usually, the

trust data is stored in the central node and storage cost is less important

at the node level. We should acknowledge that the storage cost increases

linearly with the number of entities in the system.

• Scalability: the trust model should scale with the number of nodes. Band-

width and storage costs also increase with new nodes added to the grid, but

the trust model should be built in such a way to scale well. We reported the

scalability property according with the size of the experiments the authors

performed in their papers.

With regard to grid systems we consider the following two properties as of par-

ticular importance:

• SLA or QoS negotiation: some reputation models are directly applied for

negotiation of service level agreement (SLA) or quality of service (QoS)

between 2 parties like a service consumer and producer. In most of the

cases, the items to be negotiated and how each party fulfilled the agreements

on the specific items part of a SLA are directly incorporated in the direct

trust component.

33

1.3 Reputation Management

• Trust aggregation: we refer to trust aggregation if the model allows to

aggregate trust on an organizational basis. This property is of great impor-

tance in the context of VO formation and operation as allows one (1) to

obtain the trust and reputation for a VO based on the individual trust on

its members or (2) to infer the trust or reputation for an individual based

on the trust and reputation of organizations the individual belongs to.

Table 1.1 depicts a summary of how the models we detailed on section 4 accom-

plish with these properties. Where information about a specific property was not

found on the underlying research, we used the na (not available) notation.

34

1
.3

R
e
p
u
ta

tio
n

M
a
n

a
g
e
m

e
n
t

Table 1.1: Summary of comparison between reputation-based trust systems

35

1.3 Reputation Management

1.3.2.2 Reputation systems

In this section we will describe the main reputation systems built up-to-date in

the research community. We will start our discourse with a short introduction in

the game-theoretical foundations for reputation models.

1. The game-theoretical approach for reputation

From the theoretical point of view, economics approaches the problem of

reputation in a game-theoretical framework. Agents (players) are continuously

playing the same game. When an agent plays the game repeatedly in the same

way, it is assumed that the player builds a reputation for playing certain kinds of

actions and the rest of the players will learn this reputation. The main concern is

when and whether a long-lived player can take advantage of a small probability

of a certain type or reputation to effectively commit him to playing as if he were

that type [Fudenberg and Tirole, 1991]. A related question is if reputation models

will help one to pick and choose among the many equilibriums of an infinitely

repeated game.

Considering long-lived players playing repeatedly the classical prisoner‘s dilemma

game, allowing for incomplete information about players type and allowing for

building a reputation, the theory can prove that the long-term outcome of the

game will be “to cooperate” for both players, although the sole short and long

term Nash equilibrium is to defect [Kreps and Wilson, 1982]. Also, in games

with only one long-lived player and short-living opponents, considering repu-

tation in the presence of incomplete information lets the theory to prove that

the “intuitive” outcome will happen. Fudenberg and Levine [1992] analyzed the

chain-store game with this respect. These are good examples to demonstrate how

effective reputation can be in gaining a bigger payoff from incomplete information

situations where some agents have to consider a decision making.

Game theory usual helps one to demonstrate that is worth to consider rep-

utation information when analyzing the outcome of some competing situations

with incomplete information. It is also worth to notice that game theory usual

considers reputation as being built only from previous experience of the player

within a specific context.

Such approaches were considered for analyzing sensitive options a reputation

36

1.3 Reputation Management

system designer might have. E.g. Dellarocas [2006] proved that a reputation sys-

tem should not update the reputation of players immediately after a transaction

finishes. Rather, if the players‘ reputation is updated with a-priori established

time frequency, the players can learn the reputation of opponents in the game

and more cooperation can be induced.

2. Reputation in Internet sites

Internet sites mainly use sumation-based reputation systems. These systems

are based on counting all votes or grades an entity receives. The votes can be

simply counted on the behalf of the user or they can be averaged or weighted.

As summation-based reputation systems are mainly used in e-commerce market-

places, they are mostly centralized. Their big advantage is the simplicity of the

reputation scheme. This makes the reputation value to be easily understood by

the participants and allows a direct conversion between reputation assessment

and trust. The most widely known reputation system of this kind is eBay. Other

systems are Amazon, Epinios, BizRate etc.

eBay

The most simplistic approach for assessing reputation is the summation scheme

of eBay. eBay1 is an auction-based e-commerce site for sellers and buyers with

millions on items to bid for. The reputation management system is a transaction

based one. After the end of an auction, the buyer and the seller have the oppor-

tunity to rate each other‘s performance with either 1 (positive), 0 (neutral) and

-1 (negative). The reputation of a user is the sum on these individual feedback

and it is a common knowledge into the system. The system stores and manages

the reputation centrally. New users receive no reputation and a user may leave

the system and rejoin with another identity. The advantage of this reputation

scheme is that the reputation measure is easily understood by the participants

and therefore, the reputation information can be quickly transformed in a trust

knowledge.

In eBay, most of the feedback is positive. Sellers receive negative feedback

only 1% of times and buyers 2% [Resnick and Zeckhauser, 2002]. Therefore,

the negative information is the most valuable one in the reputation database.

1http://www.ebay.com

37

1.3 Reputation Management

Jøsang et al. [2007] classifies this reputation system as primitive, but, as Resnick

et al. [2006] proves, this primitive reputation system is validated by its long

time existence, acknowledging the Yhprums Law: systems that shouldnt work,

sometimes do, or at least work fairly well.

Similar feedback summation methods were proposed in other e-commerce web-

sites. Beside summation, averaging the feedback or weighting it was considered.

Amazon

In the Amazon1 bookstore, reputation is assigned to books and to reviewers.

Regarding the books, the reputation of a book is the average score the book

received from its reviewers. A reviewer can assign to a book between 1 and 5

stars. Each reviewer has its own reputation. Each time a review is considered

helpful by a user, the reviewer receives a vote. The reviewers are ranked based

on the votes they received from users.

Similar with eBay, the Amazon reputation system is a centralized one, the

reputation is a common knowledge and it has the advantage of simplicity. Any-

way, in Amazon, the reputation does not have such a great impact on the whole

marketplace, as it can only affect the buying decision, not the price at which

the transaction happens. It is also expected that reviewers to receive positive

feedback, but, unlike in eBay, Amazon does not display how many negative votes

a reviewers received. Amazon reputation system is not a transactional one, as

one can vote a reviewer even without buying the item under review. Epinions2 is

another system that offers reviews about products and services in a similar way

like Amazon.

This kind of reputation systems is not too valuable for our concern in grids,

as they do not allow reputation to directly influence the transaction execution in

the system.

3. Reputation models based on referrals network

Building trust can be based not only on the past interactions between entities

but, also considering the social networks the entity belongs to and the referrals

the entity can obtain using the social network. Singh et al. [2001] defined the

1http://www.amazon.com
2http://www.epinions.com

38

1.3 Reputation Management

concepts of agent communities and social networks. The members of an online

community provide services and referrals for services to each other. A participant

in a social network has reputation for both expertise (providing good services)

and sociability (providing good referrals). This approach is widely considered in

the agent research community.

The referrals network described by Singh et al. [2001] is an agent abstrac-

tion for the trust model proposed by Abdul-Rahman and Hailes [2000]. Both

approaches propose a reputation learning model that updates the sociability rep-

utation of a user according with the outcome of the interaction with that user.

A lot of research was developed considering this approach. The items under

study are the way the reputation is stored in the system, how referral information

is aggregated, which learning model is used. This section will develop this sort

of referral systems.

Abdul-Rahman and Hailes [2000]

Abdul-Rahman and Hailes [2000] propose a model for computing the trust for

an agent in a specific context based on the experience and recommendations.

Like with the summation models, trust values are discrete: very trustworthy,

trustworthy, untrustworthy and very untrustworthy. Each agent stores the trust

values for the agents she interacts with, therefore, the trust model is distributed.

Each agent also stores the recommender trust with respect to another agent. The

recommender trust value are semantic distances applied for adjusting the recom-

mendation in order to obtain a trust value. They propose a method for evaluating

and combining recommendations and updating the trust value. As the model is

based on the set theory, each agent has to store all history of past experiences and

received recommendations. On a system with a lot of participants and frequent

transactions, each agent should have a large storage with this respect. Regarding

the network traffic, this is caused by the messages exchanged between agents in

order to get reputation information.

The authors provide an example of applying the reputation management

scheme, but no computational analysis is provided.

Singh et al. [2001]

Considering the same basic assumptions as Abdul-Rahman and Hailes [2000],

Singh et al. [2001] further refine the referral model. Therefore, they assume an

agent places queries for services and the responses are of two types: service ex-

39

1.3 Reputation Management

pertise and referral. Each query and response is expressed as a vector of required

expertise. Responses are evaluated based on the similarity between the received

service expertise answers and the received referrals weighted with the trust (so-

ciability) in that agent. According with this representation in the vector space

model (VSM), each agent has to store its area of expertise and the models of the

peers, including peers‘ expertise and sociability. Each agent updates the peers

expertise after verifying (by experience) the QoS provided by that peer. If the

QoS is bad, therefore, for the whole chain of agents who referred the peer under

discussion the sociability measure is decreased. Periodically, each agent decides

which peers are worth to keep in its internal model. Therefore, the storage space

at each agent is kept in a reasonable limit.

Authors tested the model in a simulated environment with 20 to 60 agents

with expertise in 5 fields. The average number of networks was selected as being

4. The main results are the following: (1) the quality of the social network

improves over time, (2) the social network stabilizes at an improved quality, (3)

when referrals are given, the quality of the system is high than without referrals

and (4) a new agent added to an existing stable network will drift toward the

neighbours from which it receives improved quality. Another result reported by

the authors regards the existence of some privileged agents in the network with

a bigger number of neighbours. If this assumption is fulfilled, the overall quality

of the system could be improved.

We can observe that with small number of participants in the network, using

reputation mechanisms a gain can be obtained in the quality of service assured.

This can have some applicability to classical grids, but the strong requirement is

that resource and service selection to be an automated task. More, the system is

self-organizing and once achieved maturity, a new member is well accommodated

by the system. The privileged agents might be assimilated with the central nodes

of a classical grid.

Despotovic and Aberer [2005]

Although the work Despotovic and Aberer [2005] refers to P2P networks, because

it fully employ the referral network as being a source for obtaining recommen-

dations, we categorize this paper as belonging to this last category. They use

a probabilistic approach for assessing peers‘ trustworthiness in a P2P network.

They assume the existence of two interaction contexts: a direct relationship where

40

1.3 Reputation Management

a destination node performs a task and recommendations when the destination

node acts as a recommender of other nodes in the network. Rather than con-

sidering the standard P2P architecture, the graph of nodes is built by linking

peers who have one the above-mentioned relationships. Standard models usual

weight a recommendation by the trustworthiness of the recommender. Instead,

they model the ability of a peer to make recommendations, which is different

from the peer trustworthiness.

Each peer j has associated innate probabilities for performing honest or dis-

honest with others. Other peers when asked about the performance of j may

again lie and misreport. Assuming a probability lk that a peer pk lies, one can

derive the probability of observing a good or bad report from peer k about peer

j . Given a sample of independent reports about peer j , one can compute the

likelihood behaviour of j , which in turn, depends on the internal probability of

agent j for performing honest. Maximizing this likelihood, one can obtain the

probability associated with a peer.

The authors state that good predictions can be obtained with 10-20 reports

(direct referrals) retrieved. A peer i can learn the misreporting probability lk by

previous experience with peer k , by asking peer k to report about the service

quality that peer produced in bilateral direct interactions. Therefore, a full prob-

abilistic model is obtained for predicting the probability of a peer to be honest.

The setup was simulated in an environment with 128 peers, varying number

of random direct interactions (from 20 to 100) and varying percentage of liars

(0.1 to 0.5). The mean absolute prediction error is low when the proportion of

liars is small. The worse results are obtained when half of the population lies and

the number of direct interaction is reduced (20).

The authors entered further details, as considering several services provided

by the peers of agents and a normal distribution for each peer with regard to

the provided QoS. The average QoS provided by a peer is internal to its model.

They analyze the following pattern of behaviour: a service provider j provides

a service of quality x to a peer j . If j is honest, then it will report the quality

x when requested. On the other hand, j will be liar and will report a quality

chosen randomly from a normal distribution. Within this setup, they show that

a maximum likelihood estimation method can be used to accurately predict the

future performance service providers, given the reports are based on their past

41

1.3 Reputation Management

provided qualities.

Testing this second setup in a network with 128 peers, with 10 to 50 interac-

tions per peer, proportion of liars varying from 0.1 to 0.4, 4 services available on

the network and the standard deviations of peers performing a service being 0.3,

they obtained good misclassification rates regarding the expected service quality.

This approach is worth for consideration in both classical grids and desktop

grids. For desktop grids, the approach does not make too much network traffic

as only a small number of recommendations are used for each computation. The

model each peer stores locally is not too big, being only the misreporting prob-

ability each peer learns about its partners. Also, as simulations proved, good

predictions can be obtained, increasing the fault tolerance of the system.

Regarding the usage of the model in classical grids, one can predict the mis-

classification rate for the expected QoS for a service provided by group of peers

(which could be a virtual organization), by employing the probabilistic model

described above.

4. Belief-oriented trust

These models keep valid the basic assumptions of the referral networks. They

refine the above described models by introducing a more sophisticated technique

for computing the trust value. The main starting point is that trust is a human

belief involving a subject and an object and the trust in a system is a subjective

measure. Because of the imperfect knowledge about the reality, one might only

have an opinion about trusting an object and this opinion could be a belief,

disbelief and uncertainty [Jøsang and Knapskog, 1998]. The roots of this approach

are in the Dempster-Shafer theory of evidence. More, this approach is consistent

with the theory of Marsh [1994], allowing the existence of two thresholds for

expressing trust and untrust beliefs. Trust values are continuous in this case and

the storage model can be distributed at the levels of the nodes in the system.

Jøsang and Knapskog [1998]

The Josang’s subjective logic [Jøsang and Knapskog, 1998] is a trivalent one, an

opinion could have 3 degrees of values: belief (b), disbelief (d) and uncertainty

(u), with

42

1.3 Reputation Management

b + d + u = 1 with {b, d , u} ∈ [0, 1]3

Assessing b, d and u from the previous experience of the agent with the object

of the trust (which can be another agent or a resource) can be done using the

beta distribution function, which is applicable in a space where every event can

be successful or unsuccessful.

The subjective logic of Josang introduces the following operators, which can

be applied at the internal level of the agent in order to produce the internal trust

model.

• the conjunction operator in order to infer a conclusion about a proposition,

having two opinions about that proposition

• the consensus operator between independent and dependent opinions

• the recommendation operator, allowing the agent to include in the inference

chain the recommendations received from a referral.

The main contribution of Josang‘ subjective logic is a clear representation of the

logic each node in the network should posses in order to manage the experience

and the received referrals.

Jøsang [1999] shows the compatibility between the subjective logic and the

PGP authentication system, demonstrating the usage of the trust values in grid-

like networked environments (based on layered certifications).

They applied this reputation mechanism for improving service discovery in a

P2P environment in Wishart et al. [2005], combining the reputation computa-

tion with distributed hash-table routing structure. In this development, referrals

are not used, they pursue building the reputation only based on experience and

received feedback.

Yu and Singh [2002]

The model of Yu and Singh [2002] could be more expressive that Josang‘s one

as they allow continuous values in order to assess the outcome of a transaction.

According with the Marsh approach, Yu and Singh considers two thresholds (low

and high) for assessing the belief or disbelief in the trusting relationship. On

their model, they directly use the Dempsters rule of combination in order to

43

1.3 Reputation Management

aggregate 2 belief functions built on different evidences. This operator has the

same meaning as the conjunction operator in the Josang‘s model.

Considering the referrals network approach previously presented in Singh et al.

[2001] and solely based on the Dempsters rule combination operator adapted to

this environment, they fully describe an agent local decision model for selection

of a transaction partner. In order to keep the referral graph restricted (because

longer the referral chain is, less reputed is the obtained information) they intro-

duced a depth limit of the referral graph.

They extended their previous experiments to a bigger number of agents (100

to 500), keeping the same vector-based information space for the expertise and

the same average number of neighbours. They introduced a new parameter in the

experiments: the cooperativeness factor an agent, after selected, might accept to

perform a transaction with a certain degree. Computing the overall reputation of

the agents in the simulated experiments, they reached the conclusion that overall

reputation stabilizes to an equilibrium value. They also simulated the behaviour

of a single agent who at the beginning was very cooperative thus gaining a very

good reputation. After that, if its cooperativeness factor was reduced to simulate

the abuse of having a high reputation, it was proved that its reputation decreased

rapidly.

The experiments of Yu and Singh are valuable especially for P2P-based grid

communities as they demonstrated formally that the predicted informal behaviour

of an agent will really happen.

5. Agent-based approaches

Generally, the agent research community sees the agent paradigm as a good

formalization for a wide variety of distributed systems, including grids, semantic

web, pervasive computing and P2P [Huynh et al., 2006]. The most important

property on which they base their discourse is the openness propriety of multi-

agent systems, the fact that the agents are self-interested, proactive, know only

a local part of the acting world and no central authority restricts the behaviours

of all agents. This section will review the main reputation models developed by

agent research community.

SPORAS and HISTOS

44

1.3 Reputation Management

The systems proposed by Zacharia and Maes [2000] were one of the first attempts

to build a reputation-based system to overcome existing trust problems in e-

commerce on-line applications. Their ideas were incorporated in later reputation-

based trust models.

First, they proposed the SPORAS system, based only on direct transaction

ratings between users. Users rate each other after a transaction with continuous

values from 0.1 to 1. The ratings received for a user are aggregated in a recursive

fashion, obtaining a reputation value that scales from 0 to 3000 and a reputation

deviation to assess the reliability of the reputation value. The recursive formula

for updating the reputation is based on the following principle: users with very

high reputation will experience much smaller rating changes after each update

and ratings are discounted over time. The time discount model was further used

in FIRE [Huynh et al., 2006].

HISTOS takes into account also the social network created between users

through performing transactions. The reputation model for user A0 from user

Ai point of view takes in the consideration all paths on the social network graph

between these 2 users. Only paths with positive (greater than 0.5) ratings are

considered. As a rating is more far away from the user under discussion, its

influence to the total social network rating is lower. The same kind of social

network was used after that in the approaches of Despotovic and Aberer [2005];

Sherwood et al. [2006].

When evaluating SPORAS and HISTOS, the authors reported better results

than the classical eBay and Amazon approaches. Although, their results were

outperformed by more recent studies.

REGRET

Sabater and Sierra [2001] propose a model, named REGRET that considers the

following dimensions of the reputation: the individual dimension: which is the

direct trust obtained by previous experience with another agent, the social di-

mension which refers to the trust of an agent in relation with a group and the

ontological dimension which reflects the subjective particularities of an individual.

Their model focuses on SLAs between two parties, with several variables un-

der interest. Each agent stores a local database with impressions regarding the

accomplishment of an agreed value of a SLA. The impression values are marked

with time stamps, are continuous and might be positive, negative or neutral.

45

1.3 Reputation Management

The subjective reputation of an agent with respect to another agent is computed

against a pattern of SLA possible variables and takes into account the impressions

stored in the local database weighted with a time discount factor. The reliabil-

ity of the subjective reputations depends on the number and the variability of

the impressions used to compute the reputation. For assessing the individual

dimension, the above-described subjective reputation is computed.

For assessing the social dimension, first, the agent aggregates its subjective

reputation for the agents members of a target social group. This is the assessment

of the agents previous experience with a target group. Second, the subjective

reputations of all agents in the same group with our agent are aggregated to obtain

the group subjective reputation for a target agent. Third, an overall subjective

reputation between groups is obtained by aggregating all subjective reputations

between agents belonging to the groups under discussion. The reputation for the

social dimension is obtained by aggregating all 3 components described above,

including the individual dimension as a 4th component. In all aggregations, weighs

are used to reflect the importance the agent puts in one or another component of

the aggregation. These weights might change during the agent lifetime

The ontological dimension is computed considering the internal ontological

model an agent has with regard to a service. Therefore, one agent might be a

good seller if he delivers on date, at an agreed product price with a certain quality.

The ontological knowledge of an agent is composed by the aggregation structure

between variables and their corresponding weights. To compute the subjective

reputation for the ontological dimension, the agent aggregates the individual

subjective reputations for the variables part of the structure of a desired variable

in a SLA.

This model is simple and allows one to express easily the reputation for the

individual experience and the group-related reputation and to compose services by

aggregation. The service composition is a well-desired property of grid systems.

Besides the internal agent database, another database is required at the level

of a group in order to store the group-based reputation. This is a mean of

centralization. Although the authors do not say by which mechanism one agent

is said to belong to one group this is viewed as a drawback in Suryanarayana et al.

[2004], with regard to grid technologies, one might consider the nodes organization

as being the group of that node. The belonging of a node to a group is, therefore

46

1.3 Reputation Management

resolved by authentication in grid systems.

Another drawback in the opinion of Suryanarayana et al. [2004] is the lack of

referrals traffic. This is indeed a drawback in P2P approaches, as only part of the

social information (the one between involved groups) is considered when assessing

the general trust, but in classical grids this could be an advantage, as is hard to

imagine that a node in an organization will easily inquire another node in another

organization for a reference. Also, the lack of the referral queries decreases the

bandwidth cost. The composition of a group reputation by aggregating the indi-

vidual members reputation might represent a mean of cheating, if most members

of a group are unfair ones. But in classical grids one can assume with a high

likelihood the good intention of the participant nodes.

Overall, the REGRET system could be of interest for classical grids as allows

a way of aggregating the reputation at the level of a group and approach the

service composition, which is a particularity of grid systems.

Ramchurn et al. [2004b]

Taking the assumptions of Sabater and Sierra [2001] as valid, Ramchurn et al.

[2004b] further refine the system by detailing more on the terms of a contract

(service level agreement - SLA). Their intention is to build a trust model to be

directly used in negotiation of a contract. As they see the negotiation process as

a successive exchange of offers and counter-offers, they argue that a trust model

can short the length of the negotiation and can assure better negotiated values.

The premises of the model are the following: the whole society is composed by

groups of agents and each agent is part of one group. Some power-based relations

exist between groups. Two agents negotiate on a contract made by several issues,

for each issue the negotiation would establish a common accepted value. Agents

get some utility after the execution of a contract. Each partner in a contract

should have some expectations about the outcome values of the issues. In the

environment, all agents must fulfill some societal rules - common to all agents,

group rules - common only to agents in a particular group and institutional rules -

coming from the interaction environment in which 2 agents negotiate and execute

the contract. Each agent stores a history of the agreed contracts and the context

(made by the rules) at the time when a contract was negotiated. The trust

model is composed by two components: confidence - accounting for the direct

trust (obtained only by the agents experience) and reputation - accounting from

47

1.3 Reputation Management

the trust obtained from the social environment.

The confidence of an agent in an issue x handled by another agent is a mea-

sure of the certainty which allows the first agent to expect a given set of utility

deviations to be achieved after the second agent will fulfill the contract. Bigger

the confidence is, smaller the expected deviations are. Confidence can be bad,

average and good, each of these linguistic label being associated a fuzzy utility

function that maps utility deviations in the set [0, 1]. The confidence levels for

an agent with respect to a contract issue is evaluated from the history of the

past interactions, by building a probability density function of the agents utility

variation. They employ a similarity function between contract values in order to

filter out cases from the history which are not relevant to the actual negotiation

context. With this approach they tackle the problem of an agent performing well

in a long history of small transactions and after that, cheating in a big and very

valuable one transaction [Resnick and Zeckhauser, 2002].

Regarding the reputation, they have a similar view as in Sabater and Sierra

[2001]. They do not consider the problem of obtaining the reputation from the

social environment, assuming that some method exist for getting it (like asking

for referrals or the existence of a central reputation service for the group). The

reputation measure is continuous, between [0, 1] and reflects the first agents view

about a second agent reputation in handling an issue of a contract with respect

to a qualifying confidence level. The group reputation is aggregated as in the

REGRET model, but considering a bigger weight for more powerful groups. Rep-

utation measure is useful for an agent without prior transaction experience as it

can base its negotiation process on it. Confidence and reputation are aggregated

in order to obtain the final trust model.

The model principles do not differ too much from the one of Sabater and

Sierra [2001], but it has the advantage of entering more in the details of the

establishment of a SLA. It can be worth for the grid community, as the authors

show how trust can be incorporated in the SLA bilateral negotiation process by

permitting the adjustment of the proposed values for the issues of a contract in

a more reliable way. Even more, when the trust that the negotiation partner

will supply the agreed values in the contract is low leading to negative utility

expectations, the model shows how an agent can further require more issues in

the contract (as a new quality certification) in order to secure a positive utility

48

1.3 Reputation Management

expectation.

FIRE

In the conception of Huynh et al. [2006] a trust model has to (1) take in con-

sideration a wide variety of information sources, (2) the agents should be able

to evaluate the trust for themselves (distribution and local control) and (3) the

trust model should be robust to lying. They address the first 2 requirements,

building a trust model based on 4 different types of trust: (1) interaction trust,

(2) role-based trust, (3) witness reputation and (4) certified reputation.

The interaction trust is built considering the previous agents experience, as

in the REGRET model. The ratings of a previous transaction are continuous,

selected from [−1, 1], only the last H ratings with regard to an issue and another

agent are stored in the local database and when aggregating the previous ratings,

a time discount function is employed. The role-based trust models the trust

resulting from the role-based relationships between 2 agents (e.g. owned by the

same company, the relationship between a service provider and its users etc).

They propose some rules in order to assess the role-based trust. These rules are

of the following form: if 2 roles are considered, a rule expresses the expected

performance between agents belonging to these 2 roles and the confidence in

the above-assessed expectation. The witness reputation is obtained from the

social network of the agent, following a referral process like the one proposed by

Yu and Singh [2002]. Therefore, queries are required to be propagated through

the network in order to compute the witness reputation, which implies a higher

bandwidth cost. The certified reputation of an agent consists of a number of

certified references about its behaviour on a particular task. Each agent stores

its own certified reputation like the references one has on her resume, and when

other agent wants to see them, the agent makes its references available. As one

agent will reveal the references its has about its previous tasks, it will have the

incentive to present only good references, therefore it makes sense to store only

the best reference obtained after fulfillment of a transaction.

To obtain the trust value for an agent, one has to aggregate each piece of

reputation mentioned above. The authors propose to weight each component as

to reflect the emphasis the model puts assigns for each of the information sources

above. The weights are normalized. Each trust value is accompanied by a relia-

bility value which, in turn, is composed of two measures: (1) a rating reliability

49

1.3 Reputation Management

computed on the basis of the weight given for certain component, measuring the

quality of the reliability and (2) a deviation reliability measuring the volatility

of rating values and therefore, the certainty of the accomplishment of an agreed

SLA.

They showed that each component of the model adds an improvement in how

reliable and fast an agent finds its partners in transactions. More, they compared

the model with a centralized approach (which is supposed to perform better as the

whole amount of information is available in one central point) and demonstrated

comparable performance levels.

We think that this model is the most complete one from the agent research

point of view, combining the advantages of the previously described models of

Sabater and Sierra [2001] and Ramchurn et al. [2004b]. Only few additional costs

are involved, as more model components require more storage and the witness

reputation requires a bandwidth cost.

ART Testbed

With the intention to unify the research with regard to reputation-based trust, a

group of researchers from several universities launched the ART Testbed compe-

tition, supplying with a testbed for unifying the experiments related with reputa-

tion models [Fullam et al., 2004, 2005]. The first edition of the contest took place

during AAMAS 2006 conference in Hakodate Japan with 14 registered agents,

but the idea emerged in 2004 and get contour during spring 2005 with the papers

of Fullam et al. presented at AAMAS 2005.

The testbed [Fullam et al., 2004] provides an environment for a limited number

of competing agents 6, which have limited expertise in providing some services

(evaluation of paintings), and which have to gain as many utility as possible (in

terms on money) by performing the service during several rounds of the game.

Agents can respond to a service request and might be engaged in exchanging opin-

ion and reputation information. Opinion information regards the agents opinion

about the value of a service and the reputation information regards the agents

trust in a third agent. Services are assigned to agents by the simulation en-

gine. Therefore, the agents should concentrate only in the social-based reputa-

tion model. With this respect, the testbed is valuable as it provides a mean of

experimentation for modeling the trust obtained by direct experience and referral

trust obtained by gossip through the social network.

50

1.3 Reputation Management

Till now, some papers ([Fullam and Barber, 2006; Kafali and Yolum, 2006;

Sen et al., 2006]) were already being produced based on the testbed. But, instead

of achieving the goal of experimenting existing strategies in a unified world, these

papers focus on the specificity of this environment.

Kafali and Yolum [2006] add a new factor to the reputation model: the self-

confidence of the agent, as being the number of times an agent is asked to produce

a reputation or an opinion. In their experiments they used agents equipped only

with a direct trust model (based on the past transaction experience) and on a

mixed model combining direct trust with reputation-based trust. An agent has

also to consider its strategy when responding to reputation requests. An agent

might respond sincerely to all reputation requests, thus being recognized as an

expert and allowing other agents to gain more or might consider to respond only

to those agents who performed sincerely in a previously reputation exchange.

They found that the most beneficial strategy is to consider the reputation-based

trust as part of the trust model and to respond sincerely to all reputation requests.

Sen et al. [2006] investigates the existence of cooperation opportunities as

part of the testbed setup. They argue that a trustful behaviour should lead

towards cooperation between individuals supplying complementary expertise for

the overall long-term goodwill of the community. They demonstrate that in the

actual environment setup, agents do not have incentive to cooperate on the basis

of trust and they propose an improvement in this direction: to change the client

share function. They also show by experimentation that such a setup based on

trust management can lead for the cooperation between self-interested agents

and conclude that an effective trust management scheme should (1) allow agents

to be inclined to help someone that has a potential to provide help, (2) allow

comparisons between different cooperation costs, (3) be able to flexible adjust

inclination to cooperate based on the current work-load and (4) be responsible

to changes in types of tasks and types of expertise in the population.

Fullam and Barber [2006] see reputation exchange as a mean on learning the

trustworthiness of the agents. They apply the q-learning method as decision sup-

port. In this method, each agent is rewarded for each action it takes. Therefore,

rewards are assigned for requesting and providing opinions and for requesting and

providing reputation. The opinion and reputation values are selected according

with the actual rewards an agent possesses. Their experiments show that learn-

51

1.3 Reputation Management

ing agents gains more than non-learning or cheating agents, while it seems that

the reputation model has only a little influence to the overall behaviour of the

learning agent.

The novelty of this approach is the fact that the trust and reputation profile

of the agents in the society is memorized in the form of related rewards. These

rewards replace the well-known trust and reputation measures. Their approach

is more a competing game-theoretical one. They are not concerned about the

overall gains of the game or about the total welfare produced, but rather about

the agent who will win the game.

Although one objective of the testbed was to provide a mean of experimen-

tation for reputation methods, it seems that only very few experimentation were

pursued on the testbed. Instead, authors focused on its game-theoretical prop-

erty, trying to win the game rather than to observe the behaviour of a particular

already developed reputation model. The paper of Sen et al. [2006] revealed some

weaknesses of the testbed, from the agent research perspective. From the grid

point of view, we can say that the testbed is not too valuable, as it can accommo-

date only a very small number of participants and the total length of a game do

not allow building large history of transactions. More, the testbed focuses only on

direct trust obtained by experience and indirect trust obtained by referrals, the

other existing types of trust being not present in the testbed. The testbed does

not allow trust aggregation, as in the model of REGRET [Sabater and Sierra,

2001], nor SLA negotiation as in the model of Ramchurn et al. [2004b] Therefore,

its suitability for evaluation, with respect to grid research is very limited.

6. P2P approaches

In P2P systems, one main concern is the identification of malicious peers

that provides misleading services. Trust models might prevent such behaviour

and might improve the reliability and fault tolerance of the system. In a P2P

approach, the challenge is how to aggregate the local trust values without a

centralized storage management and facility. Beside, two kinds of questions are

addressed by P2P approaches: what trust metric should be considered and how

to store reliable and securely the trust values across the network.

P2P approaches are more suitable for fully decentralized grids, like desktop

52

1.3 Reputation Management

grids, which come closed with P2P. Regarding their suitability for classical grids,

they are quite far from the classical grid problems like SLA and QoS negotia-

tion, or virtual organization management. But, as we will see, ideas from P2P

approaches were considered by the grid community, allowing those ideas to be

improved by some degree of centralization.

Gupta et al. [2003]

Gnutella-like P2P file sharing systems are among the most popular P2P networks.

They are fully decentralized and unstructured and file sharing is their objective.

In [Gupta et al., 2003], Gupta et al. proposes a reputation system to track back

the past behaviour of users and to allow drawing up decisions like who to serve

content to and who to request content from. They base their system on the

internal properties of such a network, where the most important activities are

content search and content download. One objective of the proposed reputation

system is to give an idea about the level of participation of the peers in the system.

The reputation system proposed by Gupta et al. [2003] is a transaction-based one,

rather than the user-based approach of TrustMe [Singh and Liu, 2003], described

in the following subsection.

In this model, the reputation of a peer depends on (1) its behaviour assessed

in accordance with the contribution of the peer to content search and download

and (2) its capability expressed in terms of processing power, bandwidth, storage

capability and memory. Each peer in the network gets credit for (1) processing

query response messages, (2) serving content and (3) sharing hard-to-find content

in the network. Content serving and sharing hard-to-find content are assessed

based on the quality of the service provided (in terms of the bandwidth and file

size). For each download, a peer reputation is debited with a similar amount as

for serving the same content. The reputation score is simply a summation of the

receiving credits with or without deducing the debits.

Each peer could maintain and compute its reputation locally. But, because

there is a misbehavior threat with regard of this operation, a reputation com-

putation agent (RCA) is provided for the P2P network with the goal of keeping

track of transactions and of the credits and debits that flows in the network. A

peer might choose to participate in the reputation system then it will need to

cooperate with the RCA, or might stay apart of the reputation system in this

case its reputation is minimal (0). The RCA maintains a transaction state of

53

1.3 Reputation Management

the system keeping track the full list of transactions and points to be granted

for those transactions for a period of time. Each peer communicates with the

RCA based on the classical public key cryptography exchange mechanism. After

each transaction, each peer reports the transaction to RCA. From time to time

the peers contact RCA for being granted with credit for their transactions. The

RCA is a central point of failure only for the reputation management scheme.

Therefore, the functionality of the P2P network will not be affected if the RCA

fails, as it only adds with a supplementary functionality.

The system is simplistic, but covers well the properties of the target P2P

network and does not interfere with the standard usage of a Gnutella-like net-

work. Although some misbehavior is still possible as peers might report incorrect

transaction details, the system tries to reduce the incentive of multiple identities

because a new coming peer always receives no reputation. Some experiments

were reported, showing the effectiveness of the reputation system.

This reputation system might have some importance for grid research as it

presents a reputation scheme that gives score for desired behaviour and penalizes

undesired one therefore, pushing toward cooperative behaviour. Also, it shows

how issues part of QoS delivered can be included in the reputation.

TrustMe

TrustMe [Singh and Liu, 2003] is another approach for decentralized and unstruc-

tured P2P networks. Rather than the approach of Gupta et al. [2003] which is a

transaction-based one, TrustMe is a user-based approach, adopting the principle

of obtaining references about a peer, before engaging in a transaction with that

peer. Broadly, TrustMe functions in the following manner: each peer is equipped

with a couple of public-private key pairs. Trust values of a peer (B) are randomly

stored at another peer (THA) in the network. Any peer A interested in the trust

value of a peer B broadcast the query on the network and the THA peers replies

this query. Based on the received trust value, peer A decides to enter or not in

interaction with peer B. After interaction, peer A files a report for peer B indi-

cating the new trust value for B and therefore, THA can modify the trust value

of B accordingly. TrustMe uses a smart public key cryptography mechanism to

provide security, reliability and accountability. It is assumed that somehow, peer

A updates the trust information for peer B and broadcast back this information

to its storage located at peer THA.

54

1.3 Reputation Management

TrustMe lets free option for selecting the trust measure and focuses on de-

veloping a secured message exchange protocol for protecting the information and

its sources in the network. Some properties of their proposed protocol are: per-

sistence, no central trusted authority needed, small decision time and ease of

contribution. It is out of the scope of this paper to develop the details of mes-

sage exchanges protocol in TrustMe. But, it is worth for consideration as an

alternative way of enforcing trust in a decentralized P2P network.

Comparing this approach with the one of Gupta et al. [2003], the bandwidth

cost is increased, as each peer has to deal also with requests relating reputation

besides its usual tasks for responding to search and download queries.

EigenTrust

According to Kamvar et al. [2003], the following issues are important in P2P

reputation system: (1) self-policing: no central authority should exist and the

peers should enforce the ethical behaviour by themselves, (2) anonymity: peer

reputation should be associated with an opaque identifier, (3) the system should

not assign profit to newcomers, (4) minimal overhead and (5) robust to malicious

collectives of peers.

Their approach is based on the notion of transitive trust: a peer i have a high

opinion of those peers who have provided it good services and therefore, peer i is

likely to trust the opinions of those peers. The idea of transitive trust leads to a

system where global trust values correspond to the left principal eigenvector of a

matrix of normalized local trust values.

Kamvar et al. [2003] considers that each peer stores locally its trust values

for the rest of the peers [Kamvar et al., 2003]. They do not enforce a method for

obtaining these trust values, but they suggest the trust values could be obtained

by evaluating each previous transaction between peers thus being a form of direct

trust. Each peer normalizes these trust values obtaining values in the interval

[0, 1], 1 being assigned to the most trusted peer. In order to obtain a global view

of the network, as in Yu and Singh [2002], each peer can ask referrals from its

neighbours regarding a third peer. The received trust values can be aggregated

using the local trust values for the neighbor as weights. Therefore, using one

set of queries that is investigating the neighborhood graph on a distance of

1, a peer can obtain a trust vector including witnesses of first order. Iterating

and querying the neighbours of the neighbours, the global trust vector becomes

55

1.3 Reputation Management

much refined. Kamvar et al. proved that by further iterations, the global trust

vector converges to a value that is unique for the network and is the left principal

eigenvector of the initial matrix of normalized trust values [Kamvar et al., 2003].

Therefore, by a repeated query process, each agent can obtain the global trust

vector, while still storing locally only its own trust values regarding the rest of

the peers. This model has also a remarkable probabilistic interpretation, as a

peer might interrogate its neighbours with the probability given by the neighbors

local trust value. In order to make the model more resistant to collusion, they

propose to consider the founders of the network as a-priori trusted nodes and at

each iteration step, to take a part of the trust as being the trust given by these

nodes. Addressing the distribution of the storage of the data, the paper lets each

node to store also its global trust number part of the global trust vector, besides

the normalized trust values. Doing this, the initial a-priori trusted nodes get lost

in the network anonymity, making the model more reliable.

Kamvar et al. [2003] addresses also some issues which are specific to P2P

architectures and are not in the scope of trust management, as how to avoid

that a peer to wrongly compute its global trust value. A replication scheme is

proposed, allowing each peer to compute the global trust value for other peers in

the network.

Regarding the usage of the trust values, they propose to select the peer who

will supply a service on a probabilistic basis, taking the selection probability as

being a mixture between the global trust value of the peer offering the service

and the local value stored at the requesting peer regarding the peer who supplies

the service.

Doing some extensive experiments, they showed a good performance of the

trust model in the P2P setup. Although, they could not totally reduced the

failure rate in the system, but the improvements are significant.

PeerTrust

PeerTrust [Xiong and Liu, 2004] is based on 5 important parameters contributing

to a general trust metric. The 5 parameters considered are: (1) the feedback a

peer obtains from other peers, (2) the feedback scope counted as the number of

total transactions that a peer has with other peers, (3) the credibility factor for

the feedback source, (4) the transaction context factor discriminating between

mission-critical and non-critical transactions and (5) the community context fac-

56

1.3 Reputation Management

tor for addressing community-related characteristics. In fact, as revealed by their

general trust metric formula, the trust metric for a peer is composed by the com-

munity context factor metric and the weighted satisfaction received for previous

transactions.

The weighted feedback received for previous transactions internalizes the first

four information sources mentioned above. Regardless of the feedback scheme

used by the peers, the feedback should translate into a continuous [0, 1] numerical

satisfaction measure, accounting for the first 2 information sources. For assessing

the credibility, a first choice they propose is to use recursively the existing trust

values of the peers, building an averaged TVM metric. The second choice is to

construct the credibility measure from the similarity of satisfaction vectors col-

lected from other peers that interacted with both peers involved in a transaction.

The transaction context factor could be in fact a time decay weighting function,

allowing that more recent transaction to have a bigger influence. The commu-

nity context factor can have a very big importance in the model, and its main

intention is to provide with a way of convincing peers to give feedback for past

transactions. Therefore, they propose as a measure the proportion between the

number of the transactions for which a feedback is given and the total number

of transactions of that peer. Regarding the distribution of the trust model, each

peer has a trust manager that is responsible for feedback submission, for trust

evaluation and a database that stores a portion of the global trust data. Several

distributed algorithms are proposed for computing the various formulas required

by the trust model.

They performed some simulation over several P2P setups with varying number

of peers in order to find the effectiveness of the proposed formulas and algorithms.

They also considered a defective behaviour of a part of peers. They concluded

that the similarity-based approach for measuring the credibility is more efficient

than a recursive trust based approach is a setup with malicious peers. When

trust-based peer selection is employed in a collusive approach with the similarity-

based measure for peers credibility, better results and bigger transaction rate is

obtained in comparison with a standard setup without trust-based peer selection.

The importance of the paper is the demonstration that a trust-based mech-

anism for partner selection in a transaction is worth for consideration in a P2P

approach. Also, they demonstrate that usage of 3rd party information for building

57

1.3 Reputation Management

credibility (reputation indirect trust) is much valuable that only the own-existing

experience. Rather than based on own evaluation of the experience, the model

bases on feedback, taking its inspiration from eBay.

With regard to the usage of the model in classical grids, not too many things

can be said, as the model does not tackle the problem of QoS and SLA negotiation.

The trust measures developed part of the model could be of interest as they

proved to be effective is a P2P approach. They also do not tackle the problem of

peers belonging to different organizations, which is of interest in classical grids.

Although, the model has a great importance regarding desktop grids, as it uses

a full P2P approach.

P-Grid

In P-Grid, Aberer and Despotovic [2001] see reputation as an assessment of the

probability that an agent will cheat. To compute reputation they use data anal-

ysis of former transactions. Their trust is binary; an agent can perform a trans-

action correctly or not. They consider that usual trust exists, and therefore, they

disseminate only dishonest information as relevant. They name this information

as complains. Therefore, agent p after detecting the malicious behaviour of agent

q will store a complaint c(p, q). The total trust of an agent p is defined as the

number of complains the agent p stores multiplied with the number of complains

about agent p stored by other agents. High values for this trust value indicated

the fact that the agent is not trustworthy.

The global trust model is very simplistic and in this approach the main chal-

lenge is to store complains in a distributed manner in the network. The P-Grid

solution is selected. A P-Grid is a virtual binary search tree, each leaf in the tree

being associated with a node from the network. Each node stores data items for

which the associated path is a prefix of the data key and also some routing infor-

mation for directing a search to a complementary node. This P-Grid structure

supports 2 operations: insertion of a new node with its related information and

query for complains data about an agent. Search is done in O(log n) time and

the storage space required at each agent scales also with O(log n).

For insertion of a new node, the same insert method is replicated for a number

of times, chosen according with the supposed proportion of cheating agents. For

locally computing the trust, an agent asks several queries for the same data and

after that, she aggregates the received responses, according with the frequency a

58

1.3 Reputation Management

witness agent is found. The decision regarding whether an agent is trustworthy

or not is chosen according with the following heuristics: if an observed value for

complaints exceeds the general average of the trust measure too much, the agent

must be dishonest.

They evaluated their trust scheme on a population of 128 agents, with different

number of cheaters in it and a big number of interactions (6400 or 12800). Good

quality for the trust measure is obtained, and this quality can be increased only by

increasing the data replication in the P-Grid. The scheme has also the quality of

distinguishing well the cheating agents. Therefore, the advantage of the method is

that it allows taking decisions regarding peers interactions in an increased number

of cases, increasing the reliability of the P2P network.

The method is quite suited for P2P approaches and also for decentralized

desktop grids. With regard to a standard grid, anyway, the usability of the

method is under question, as it does not address the QoS and SLAs and not also

the virtual organization formation.

NICE

The NICE approach [Sherwood et al., 2006] targets a specific P2P network im-

plementation, the NICE1 platform. In their view, the trust value of a node B at

a node A is a measure of how likely the node A believes a transaction with node

B will be successful. They adapted the idea of the social network described in

the agent-based approaches to the structure and the security requirements of a

fully decentralized P2P network, equipped with a PKI infrastructure. Each agent

comes to the system with a pair of public and private keys and the messages are

signed by the peers who are creating them. Therefore, after each transaction

between a peer client A and a servant B , the peer A generates a cookie with its

perceived feedback (trust value) for the transaction. Trust values scales from 0

to 1. Peer A sends the cookie to B and peer B can store the cookie as a reference

of its effectiveness in other transactions. Peer B can decide which cookies to

store and how long to store such a cookie. More, each peer could posses its own

algorithm for updating and storing the trust values it receives from transaction

partners.

When a peer A deliberates to enter a transaction with peer B , a cookie might

exist between A and B and in this case, this cookie contains the trust peer A

has for B . Or previous transactions did not already exist or were discarded. In

59

1.3 Reputation Management

this case, A will ask its partners about having cookies for B and the partners will

continue to spread the request into the network till a path between A and B is

established. As a response to its request, peer A will collect the cookies that link

it to B and therefore, will have the graph structure of the social network. On

this graph structures paths between A and B are evaluated either by selecting the

minimum trust value on the path or by multiplying the trust values. Therefore,

the strongest path can be selected. Refinements mechanisms are presented with

regard to generating cookies requests. One of them is to allow users to store

negative cookies. It is obvious that after a defective transaction, when peer A

will generate a cookie for peer B with a low trust value, peer B will simply discard

the cookie, as it does not help him. But instead, peer A can retain the cookie as

a blacklist, and never entering transactions with peer B .

Experimenting with the system in various setups, the authors proved that the

method scales well. Allowing each user to store a maximum 40 cookies and the

outdegree (number of peers that receives the same message) of a cookie query

to 5, they showed that querying at most 3 nodes in depth is enough to obtain

a good representation for the social network. The total number of peers varied

from 512 to 2048. When considering also malicious peers in the system (peers

that do not follow the NICE trust protocol), a robust cooperative group emerged

in the system. As they demonstrated, number of trust-related queries that are

forwarded into the network is kept low; therefore, the total bandwidth overhead

is minimal. As cookies are small and a peer does not have to memorize too many

cookies, the memory requirements are kept also reasonable.

This approach shows how ideas from multi-agent research can be successfully

employed in P2P computation. As the NICE is concerned with resource bartering,

this environment comes closer to a fully distributed and decentralized grid.

7. Incentive compatible approaches

As we have seen in the previous sections, trust can be obtained both from

direct interactions and via a third party source. After a transaction is finished,

agents have to report about the result. Most studies assumed that agents re-

port truthfully such information (eBay, Amazon, [Abdul-Rahman and Hailes,

2000; Huynh et al., 2006; Jøsang, 1999; Kamvar et al., 2003; Kerschbaum et al.,

60

1.3 Reputation Management

2006; Ramchurn et al., 2004b; Sabater and Sierra, 2001; Singh et al., 2001; von

Laszewski et al., 2005; Wishart et al., 2005; Yu and Singh, 2002]). When con-

sidering indirect third party sources to account for the reputation of an agent,

again, the third party agent might lie and report incorrect information.

Some of the studies listed before analyzed in some extent the agents truth-

fulness and how robust the proposed reputation schemes are to such attacks.

In this section we will shortly list these results and therefore, we will present

the incentive-compatible reputation mechanism of Jurca and Faltings [Jurca and

Faltings, 2003], whose design was guided exactly by these considerations.

Despotovic and Aberer [2005] experimented their system against liar agents

and reported good results when the number of liars is low and there are enough

agent interactions. But, the performance gets worse as half of the population lies

and the number of direct interactions is reduced. Agents are let to deduce the

misreporting probability from their direct interactions.

Regarding the ART testbed setup, Kafali and Yolum [2006] barely reported

that playing honest when responding to reputation requests is the most beneficial

strategy. Fullam and Barber [2006] did not investigate the effects of coordinated

lying strategies.

In P2P systems, the designers usually do not allow peers to store theirs trust

values and the storage model is distributed and replicated through the all network.

Most of them consider this trust storage scheme as enough for protecting against

lying nodes. In P2P systems like Gnutella, Gupta et al. [2003] recognizes an

increased possibility of collusion when debits are not considered as part of the

reputation measure. Cheating like reporting fake feedback is not possible in this

setup, because the reputation points are uniformly given per transaction basis. In

TrustMe [Singh and Liu, 2003], the authors designated a majority voting protocol

in order to assure the reliability of the trust values communicated in the network.

In PeerTrust [Xiong and Liu, 2004] the authors experimented with opportunistic

cheating players but they only reported which of their proposed trust scheme

performs better. In P-Trust [Aberer and Despotovic, 2001] the data replication

scheme protects against lying.

Jurca and Faltings [2003] proceed with a game-theoretical approach when

developing an incentive-compatible reputation mechanism. They argue that it

is not in the best of an agent to (i) report reputation information because it

61

1.3 Reputation Management

provides a competitive advantage to others; (ii) report positive ratings because

the agent slightly decrease its own reputation with respect to the average of other

agents and therefore, reporting negative ratings the agent will increase its own

reputation. They base their model on the classical Prisoner Dilemma played

iteratively. They acknowledge that an incentive-compatible mechanism should

induce side-payments that make rational for agents to share reputation. These

side payments are managed by a set of broker agents called R-Agents that buy

and sell reputation information. The interaction protocol is as it follows: before a

transaction, the agents select a R-Agent whom they ask about reputation. Each

agent asks the R-Agent about the reputation of the partner and pays for this

information. After finding out knowing the reputation of the partner, the agent

can decide to engage in the transaction (play the game) or stay apart. If both

agents decided to play the game, they enter a contract negotiation stage where

they agree about the transaction terms and after that, they do the transaction

and receive the payoffs for the transaction. From the payoffs, they can determine

the behaviour of the partner in the transaction and submit a report to the selected

R-Agent. After submitting the report, they will get a payment for this from the

R-Agent. The agents also update their view about the effectiveness of the R-

Agents regarding the reputation transactions. Payoffs obtained by transactions

and by selling reports to the R-Agents are not interchangeable.

Regarding the payments an agent receives from a R-Agent, they selected the

following payment scheme: if agent A reports about agent B behaviour and the

report is the same as the next report received about agent B , in this case agent

A will receive a positive payment for the report, otherwise nothing. They proved

that in the case that the joint probability of lying inside the population is less

than 0.5, the agents will be rational by reporting truthfully to R-Agents.

R-Agents are points of centralizing information in the system. It is possible

that some R-Agents to have more accurate information than other R-Agents.

Therefore, is important for usual agents to learn how to select R-Agents when re-

questing reputation information about transaction partners. A q-learning scheme

is proposed for selection of the R-Agents, each R-Agent being selected according

with the maximum expected reward value.

They experimented with this setup and showed that agents that use repu-

tation information before engaging in a transaction accumulated much wealth

62

1.3 Reputation Management

that agents that did not use reputation information. 40% of bad transactions

were eliminated through the usage of the reputation incentive mechanism. More,

introducing liar agents in the world, they showed that these agents finished by

loosing money, while the trustful agents performed well.

The authors extended the model for pricing services in P2P networks [Jurca

and Faltings, 2005a] and for improving the service level agreement in the web

services world [Jurca and Faltings, 2005b]. In Jurca and Faltings [2005b], they

considers groups of customers (like silver, gold and platinum customers) being

serviced by providers and submitting binary feedback for the received QoS. The

reputation of a provider is therefore the average positive feedback submitted by

members of a customers group. Therefore, reputation is identical with the QoS

delivered to a group of customers. The reputation mechanism also uses some

trusted nodes that submit high trusted reputation reports. To assure that cus-

tomers will report truthfully about the received QoS, as in the previous work,

they consider side-payments for each valid report submitted to the reputation

mechanism. Providers have the incentive to supply with the advertised QoS be-

cause some penalty payments are considered in the case they missed to accomplish

the established SLA. The size of the penalty payments is computed taking into

account the reputation of the provider.

These last papers ([Jurca and Faltings, 2005a,b]) are worth for consideration

for the Grid community as they show directly how principles of rational behaviour

from economics and game theory can be used to put incentives on the grid play-

ers to behave for the goodwill of the community. More, although the presented

models have some degree of centralization, this is not a drawback in what con-

cerns classical grids, as entity owners can behave as R-Agents for memorizing the

reputation of the players.

1.3.2.3 Using reputation in grids

Up to date, there are several approaches of applying reputation models to grid

systems. Reputation models can bring with more dependability in the grid by

tackling the sabotage-tolerance problem or by improving the resource allocation

and scheduling in grids. In either cases, the usage of reputation models affects the

notion of trust in the grid computing environment, allowing the system to con-

struct the soft version of trust. Sabotage-tolerance problem is specific to desktop

63

1.3 Reputation Management

grids and there are several approaches with this regard. In classical grids, models

described in the previous section were applied mainly in resource management

with respect to virtual organization formation and evolution phases. In this sub-

section we will describe these approaches. The sabotage tolerance problem of

the computational desktop grids will be developed in section ??. This subsec-

tion will describe the approaches that employed reputation models in classical

grids tackling resource management through virtual organizations. Service level

agreements and quality of service negotiation are of particular interest.

GridEigenTrust

von Laszewski et al. [2005] exploits the beneficial properties of EigenTrust [Kam-

var et al., 2003], extending the model to allow its usage in grids. They integrate

the trust management system as part of the QoS management framework, propos-

ing to probabilistically pre-select the resources based on their likelihood to deliver

the requested capability and capacity.

They took the basic framework of EigenTrust and adapt it for grid require-

ments, resulting the GridEigenTrust model. First, to integrate trust in a QoS

management, trust should be related to multiple existing contexts. If we discuss

about grids, we need to address entities, organizations and virtual organizations.

Considering 2 organizations which entities interact, a trust table will store the

direct trust between the organizations, for each context of the transactions. The

global trust between organizations at time t is computed by weighting the direct

trust table entry with a time decay weight. The trust relationship of organization

i for another organization j for a context c is obtained by aggregating the di-

rect trust between these two organizations with the reputation of organization j ,

weighted with normalized values. The global trust or reputation of an organiza-

tion j is computed by obtaining recommendations from a 3rd organization and by

aggregating the received recommendations with the direct trust values, applying

the time decay function specific for the given context. This value is normalized

as to scale to [0, 1].

Considering a hierarchical organization of the entities, the trust of an orga-

nization will be computed based on the trust of belonging entities. The trust of

a virtual organization will be computed based on the trust of the internal orga-

nizations. The updated trust of an entity is the weighted average between the

old trust of the entity weighted with the time decay measure and the trust of

64

1.3 Reputation Management

the organization to which the entity belongs to, weighted with the importance

(grade) of the entity in the organization. A new organization that just joins the

grid may be assigned a low trust or a trust with similar organizations, already

part of the grid. The reliability trust of an organization could be obtained by

normalized weighted sum of the direct experience and the global trust in that or-

ganization. To this weighted sum they also add the grade that users from trusting

organization assign to entities part of the trusted organization.

These global reliability trust values are used as normalized trust values in

the EigenTrust model, being therefore, used to compute by iteration the global

trust vector of the virtual organization. As the P2P architecture of Kamvar et al.

[2003] is no more of interest, a reputation service manager will perform all trust

computation. The reputation service is composed by a data collection manager,

a storage manager, a reputation computation manager and a reputation reporter.

The approach of von Laszewski et al. [2005] is one of the few from literature

to propose a reputation service as a way to improve QoS management in grids.

Although they present the design of the system, they do not present experiments

in order to prove the efficiency of the approach.

PathTrust

PathTrust [Kerschbaum et al., 2006] is a reputation system proposed for member

selection in the formation phase of a virtual organization. Because virtual orga-

nizations represent one of the main abstraction of the grid [Foster et al., 2001],

we described PathTrust as a grid-related reputation system.

To enter the VO formation process, a member must register with an enterprise

network (EN) infrastructure by presenting some credentials. Besides user man-

agement, EN supplies with a centralized reputation service. At the dissolution of

the VO, each member leaves feedback ratings to the reputation server for other

members with whom they experienced transactions. The feedback ratings can be

positive or negative ratings. The system requires each transaction to be rated by

the participants.

PathTrust arranges the participants in a graph structure similar with the

one of NICE [Sherwood et al., 2006] or agent-based social networks [Singh et al.,

2001]. Each edge in the graph is weighted with the trust between the nodes at the

ends of the edge. This trust is computed by accounting the number of positive

feedback let by participant i for participant j and subtracting the number of

65

1.3 Reputation Management

negative feedback weighted by the report between the total positive feedback and

total negative feedback participant i has submitted. If the report is less than

1 that is i submitted more negative feedback, then the weight is 1. The above

trust value is normalized by the total number of transactions and therefore, it is

less than 1. To distinguish between no transactions experience at all and some

existing experience, the trust value is lower bounded by some small value (0.001).

The weight of a path in the graph is the product of the weights of the edges

that compose that path. As in NICE [Sherwood et al., 2006], for assessing the

reputation between 2 nodes in the graph, the PathTrust algorithm selects the

path with the maximum weight. Like in the EigenTrust [Kamvar et al., 2003]

approach, the trust value is seen as the probability of selecting a participant from

the list of possible alternatives.

They evaluated the PathTrust scheme against the EigenTrust algorithm and

against attacks by reporting fake transactions in the system. It seems that with

EigenTrust, a cheater can gain more profit than with PathTrust. The second test

they performed was against random selection of participants. The results show

that EigenTrust looses its advantage over random selection once cheating was

introduced in the system. This loss occurs also with PathTrust, but is much lower.

Therefore, to prevent cheating, the authors propose the usage of a transaction

fee.

PathTrust is one of the first attempts to apply reputation methods to grids

by approaching VO management phases. They approached only partner selection

and did not tackled organizational aspects. Their model still lacks of dynamics,

as the feedback is collected only at the dissolution of the VO. But, the advance in

the field is given by the fact that ideas from previous research were successfully

transferred in the area of virtual organizations and grids.

1.3.2.4 Conclusion

Grids pool together resources of various kinds and from various providers. Assur-

ing a trusted computational environment is one of the fundamental requirements

in Grid computing. Up-to-date, a lot of efforts were directed toward building

trust using security mechanisms. But, as the Grids evolves in the direction of

P2P computing and business usage, in the context of a fully transparency and

automation at the level of resource-to-job assignments, reputation-based tech-

66

1.3 Reputation Management

niques for building trust come into discussion. This paper reviewed the existing

research in the area of reputation management, carried out in various fields of

computing: Internet, e-commerce, agent systems, P2P and grids. We identified

the most important properties a designer has to consider when approaching a

reputation management system, depending on the context of applicability.

In general, models based on rational behaviour principles from economics as

the one of Jurca and Faltings [2003] are worth for consideration as they allow

nodes to behave autonomously and still to keep stability and goodwill in the

society. Of course, the assumption that trust is a belief [Jøsang, 1999] and has

some degree of uncertainty needs to be incorporated in the model. In the context

of classical grids, centralized or semi-centralized approaches are still valid. One

has to consider reputation aggregation in the context of virtual organizations, as

in the approach of Sabater and Sierra [2001]. Other requirement to be considered

in the case of classical Grids is the SLA and QoS negotiation. Models that

emphasize on SLA [Huynh et al., 2006; Jurca and Faltings, 2005b; Ramchurn

et al., 2004b] are worth for consideration.

For P2P systems and desktop grids, decentralized solutions are required. The

approach of Zhao et al. [2005] reports goods results for failure detection with rep-

utation mechanisms. One has to consider memory and bandwidth costs in such

networks when devising a reputation management scheme because model distri-

bution incurs such drawbacks. Some reputation management schemes reported

good results with respect to these requirements [Gupta et al., 2003; Sherwood

et al., 2006]. Including reputation acquired from the social network is valuable as

some papers reported high trust induced in comparison with models using only

direct reputation information [Xiong and Liu, 2004].

In the context of Grid systems, not too many reputation-based approaches

are in the market. We can not recommend a reputation system as being the

best of all Grid requirements, the design of the reputation mechanism being

hardly dependent on the solution used for implementing the Grid middleware,

how services are expressed in the Grid and how they are distributed.

In Grids, further research should concentrate on addressing resource selection

and job allocation using algorithms that incorporate reputation of entities. Con-

sidering the virtual organization concept as the main abstraction of the grid, a

reputation model should at least accomplish the trust aggregation and SLA and

67

1.3 Reputation Management

QoS negotiation requirements. Regarding desktop grids, we think that job allo-

cation can be improved with the usage of reputation models, mainly in the case

of untrusted environments with high failure rates or big number of saboteours.

Usage of reputation models can reduce the gap that currently exists between clas-

sical grids and desktop grids, making desktop grids trustable and allowing them

to be used as the classical grids are.

1.3.3 A Model of Virtual Organizations

In order to support rapid formation of VOs, we use the concept of virtual breeding

environment (VBE) [Camarihna-Matos and Afsarmanesh, 2003] adopted from

the Virtual Enterprises community. A VBE can be defined as an association of

organizations adhering to common operating principles and infrastructure with

the main objective of participating in potential VOs. For this research, we have

adopted the view that organizations participating in a VO are selected from a

VBE, as illustrated in figure 1.2.

Figure 1.2: VBE and VO Models

Such organisations may provide services, represented by ovals, and include

users that utilize VO services, represented by small squares. Organisations pre-

register to a VBE via the VO Manager component, including description of the

services they are willing to share in a Grid and the list of potential users belonging

to the organisation. When a user wants to create a VO, he assumes the role of VO

68

1.3 Reputation Management

Owner and contacts the VO Manager with the description of the needed services.

The VO Manager includes a service brokering component that suggests potential

concrete services and their service providers. The VO Owner then selects a subset

of these service providers and their services, and then defines the list of users for

the VO.

The VBE can be seen as a market place where service providers are competing

to participate in VOs and users within VOs are competing to use services. Repu-

tation information about service providers can be used as a parameter for guiding

the selection of VO partners. On the other hand, having reputation information

about users could help service providers to implant tighter security mechanisms

for accessing their services and the resources underlying them.

1.3.4 A Utility-Based Reputation Model for VOs

In this section, we develop a general utility-based reputation model for VOs, which

will be used later to manage reputation in service-oriented VOs. Our reputation

model is described in detail in Silaghi et al. [2007b]. The model was initially

devised for service-oriented computing in grid systems and improves the models

presented in the related work section 1.3.2.2.

Central to our model is the notion of an organisation. The set of all organi-

sations is denoted by Org . We keep track of all VOs that have existed and use

the set VOId to denote the set of all VO identifiers. The entities we want to

keep reputation values for are defined as elements of the set Ent . An obvious

restriction is that an entity must belong to an organisation. We are interested in

some particular issues of interest associated to an entity; the set of all issues of

interest is represented by Issue. The individuals that consume (use) the entities

and qualify them are members of the set Cons . The sets Ent , Issue and Cons

are considered type parameters that will be instantiated according to the domain

we are interested in. Below we represent above types and their associations as

functions, using the mathematical notations provided by the Z specification lan-

guage [Woodcock and Davies, 1996].

[Org , VOId]

VOS : VOId 7→ POrg

69

1.3 Reputation Management

[Cons ,Ent , Issue]

EntOrg : Ent → Org

EntIssue : Ent → P Issue

EntCons : Ent 7→ PCons

Notation [Org ,VOId] introduces Org and VOId as basic types. VOS associates a

VO with the set of organisations participating in it. Function EntOrg associates

an entity with the organisation to which it belongs to; EntIssue relates an entity

with its issues of interest; and EntCons associates an entity with its consumers.

In our model, we assume the existence of monitors that deliver events indi-

cating the current value produced by an entity for a consumer in relation to a

particular issue of interest within a VO, at an observed moment of time. We

represent an event as a tuple that contains of the following elements: the time

stamp of the event, a consumer, an entity, an issue, VOId and a k number of

attributes, Attr . A trace corresponds to a sequence of events:

Event == TimeStamp × Cons × Ent × Issue×
VOId × Attr1 × . . .× Attrk

Trace == seq Event

A utility function reflects the satisfaction of a consumer in relation to a par-

ticular entity. It relates an event with a numeric value indicating what is really

received by the consumer:

utility : Event → [0, 1]

The complete definition of a utility function is considered to be domain specific.

Utility functions are used to define the reputation of an entity in relation to

a particular issue of interest from the perspective of a consumer.

[Cons ,Ent , Issue]

rep eic : Time × Cons × Ent×
Issue × VOId → [0, 1]

∀ c : Cons , e : Ent , i : Issue, vo : VOId •
rep eic(t , c, e, i , vo) =∑
ev∈Trace�{(ts,c,e,i,vo,···)∈Event}

ϕ(t ,ts)utility(ev)

#(Trace�{(ts,c,e,i ,vo,···)∈Event})

70

1.3 Reputation Management

where #s denotes the cardinality of sequence s and s � A denotes the largest

subsequence of s containing only those objects that are elements of A. ϕ(t , ts) is

a time discount function that puts more importance on events registered closer

in time with the moment of computing the reputation. Reputation, rep eic, is

defined as the weighted average of the utilities obtained from all generated events

so far; it is defined as a generic function parameterized by sets Cons ,Ent and

Issue.

As a fitness measure for the above-defined reputation, we consider the rep-

utation deviation dev rep eic. The reputation deviation shows how much the

reputation varies in time and it evaluates the stability in the behavior of the VO

members.

[Cons ,Ent , Issue]

dev rep eic : Time × Cons × Ent×
Issue × VOId → [0, 1]

∀ c : Cons , e : Ent , i : Issue, vo : VOId •
dev rep eic(t , c, e, i , vo) =∑
ev∈Trace�{(ts,c,e,i,vo,...)∈Event}

ϕ(t ,ts)|utility(ev)−rep eic(t ,c,e,i ,vo)|

#(Trace�{(ts,c,e,i ,vo,...)∈Event})

Aggregating the reputation of an entity over all its consumers within a VO

produces the reputation of the entity in the VO with respect to a particular issue

of interest.

[Ent , Issue]

rep ei : Time × Ent × Issue × VOId → [0, 1]

∀ e : Ent , i : Issue, vo : VOId •

rep ei(t , e, i , vo) =

∑
c∈EntCons(e)

rep eic(t ,c,e,i ,vo)

#EntCons(e)

Reputation function rep ei is defined as a generic function paremeterised by sets

Ent and Issue.

The reputation of an entity in a VO is then the aggregation of its reputation

in each of its issues of interest within that VO.

71

1.3 Reputation Management

[Ent]

rep e : Time × Ent × VOId → [0, 1]

∀ e : Ent , vo : VOId •

rep e(t , e, vo) =

∑
i∈EntIssue(e)

rep ei(t ,e,i ,vo)

#EntIssue(e)

The general VBE reputation of an entity is then the aggregation of its repu-

tation in all VOs.

[Ent]

rep : Time × Ent → [0, 1]

∀ e : Ent • rep(t , e) =

∑
vo∈domVOS

rep e(t ,e,vo)

#domVOS

This last definition assumes that the domain of VOS represents the VBE; i.e. all

the organisations participating in it.

Reputation deviation can be defined for all above-presented reputation devi-

ation.

1.3.4.1 Properties of the Reputation Model

In this section we shortly discuss the properties of the reputation model presented

above.

At the beginning we should note the usage of monitors to gather data for

building the reputation. Most reputation models presented in section 1.3.2.2

are based on direct or indirect feedback collected from information sources with

questionable reputation. As many VBEs (like Grids) supply with trustable mon-

itoring services, using the data provided by those services seems to be a good

alternative.

Next, central to the described reputation model resides the utility functions.

Utility functions reflect the consumer perception about the delivered services.

The utility function is an intrinsic evaluation of each consumer and might be

difficult to construct it. We assume that somehow, the reputation manager builds

the utility function of each consumer before the service to be delivered. For

example, every user that joins a VBE and registers to the reputation management

72

1.3 Reputation Management

service can pass a questionnaire used to further infer the utility function for that

user. Knowing the utility functions before service delivery is a key feature of

our model because it reduces the risk of cheating. If the consumer reveals out

another utility function than its real one, it will end up with a service delivery

associated with this wrong utility function, thus, will not benefit any more from

the participation in the collaborative system.

When computing the reputation, instantaneous utility values associated with

the events are weighted using a time discount function. Putting more empha-

size on newer events represents a widely accepted approach in the reputation

management literature [Huynh et al., 2006; Ramchurn et al., 2004b; Sabater and

Sierra, 2001]. We recommend the following time discount function, also adopted

by Huynh et al. [2006]:

ϕ(t , ts) = e−
t−ts
λ

λ is a parameter used to tune the importance of the newer events against

older ones and its value is related with the time scale employed by the monitors

for registering the events.

Figure 1.3 depicts the reputation for a service with one issue uniformly de-

livered in a variation band of 85% to 105% of the agreed QoS for the issue. On

the top plot we depicted the cloud of the observed events. We considered 1000

time units. We can notice that at the begining of the experiment, after a short

learning time frame, the reputation stabilizes itself around a value.

Figure 1.4 we considered a similar setup, but now, between time units 200

and 300 the consumer perceived a decay in the QoS. We can note the reputation

recovers slowly after the dramatic decay in the QoS and on the long time, as the

consumer gets continuously the same delivery patters as before the decay, the

reputation converges to the initial value.

Reputation deviation can be used to decide in cases the service is delivered

with a fluctuating quality. A reputation value accompanied with a smaller repu-

tation deviation indicates a higher confidence in the expected value for the item

under study. For example, normal distributed values around a central average are

less fluctuating than uniformly distributed values around the same average. The

upper part of figure 1.5 shows the how reputation varies in time for two patterns

of QoS delivery explained above. In the lower part of the figure we can notice

that the reputation deviation curve for the case of the normal delivery is situated

73

1.3 Reputation Management

Figure 1.3: Reputation when the issue is delivered uniformly distributed in a

variation band

Figure 1.4: Reputation when there is a decay in the QoS delivery

below the curve for the uniform delivery of the QoS, indicating much confidence

on the reputation of the first provider.

74

1.3 Reputation Management

Figure 1.5: Reputation deviation used to assess the confidence in the reputation

value

1.3.4.2 Reputation Management for VO Service Providers

Here we aim at maintaining reputation for organisations as service providers in

a VO according to the Quality of Service (QoS) of the services they provide. In

this model, consumers correspond to the users in a VO, denoted by VOUser , and

entities correspond to the VO services, denoted by the set Srv . There are several

options for selecting issues of interest. We can have either a fine granularity

where each service level objective defined for a service can be seen as an issue

of interest, or a coarse granularity where the whole QoS can be seen as a single

issue of interest. For simplicity, we select the latter option.

Functions UsersVO and SrvVO represent the set of users of a VO and the

services that an organisation provides to a VO, respectively.

UsersVO : VOId → PVOUser

SrvVO : VOId ×Org → P Srv

As we mentioned earlier, our model requires the existence of monitors capable

of detecting variations in the QoS of each service and generating events to inform

the reputation system about such variations. An event is then represented as a

tuple denoting the current value of the QoS of a service being used by a user

75

1.3 Reputation Management

within a VO.

Event == TimeStamp × VOUser × Srv×
{QoS} × VOId × R

where QoS is a name indicating the QoS issue. In order to define the correspond-

ing utility function, we introduce an auxiliary function indicating the Service

Level Agreement (SLA) accorded between a VO user and a service provider for

a particular service within a VO.

SLA : VOUser × Srv × VOId → R

The SLA function represents the expected quality of a service. It is used to define

the utility (satisfaction) a user gets when consuming a VO service.

utility : Event → R

∀(u, s ,QoS , id , v) ∈ Event •
utility((u, s ,QoS , id , v)) ={

1 if v ≥ SLA(u, s , id)
v

SLA(u,s,id)
if v < SLA(u, s , id)

We can now define the reputation of a service using the reputation functions de-

fined in the previous section. Here Srv rep eic denotes the reputation value given

by a particular VO user to a service in relation to its QoS in the VO. Srv rep ei

represents the reputation of a service taking into account its QoS in a VO; it is

an aggregation of the reputation given by all users to the service in relation to

the QoS issue of interest within that VO. Srv rep e denotes the reputation of

a service in a VO. Finally, Srv rep indicates the general reputation of a service.

Note, since we have only one issue of interest, Srv rep ei and Srv rep e will be

equivalent. All these reputation values are computed at a given time moment.

Srv rep eic == rep eic[Time,VOUser , Srv ,

{QoS}]
Srv rep ei == rep ei [Time, Srv , {QoS}]
Srv rep e == rep ei [Time, Srv]

Srv rep == rep[Time, Srv]

Using the above functions, we can now define the reputation of an organisation

in a VO and its reputation in a VBE. The reputation of an organisation in a VO,

76

1.3 Reputation Management

denoted by Org rep VO , is defined as the aggregation of the reputation of all

the services it provides to that VO.

Org rep VO : TimeStamp ×Org

×VOId → R

∀ o ∈ Org , vo ∈ VOId •
Org rep VO(t , o, vo) =∑

e∈SrvVO(vo,o)

Srv rep e(t ,e,vo)

#SrvVO(vo,o)

On the other hand, the general VBE reputation of an organisation is defined as

the aggregation over all its VO reputations.

Org rep VBE : TimeStamp ×Org → R

∀ o ∈ Org •
Org rep VBE (t , o) =∑

vo∈{v∈domVOS|o∈VOS(v)}
Org rep VO(t ,o,vo)

#{v∈domVOS |o∈VOS(v)}

1.3.4.3 Reputation Management for VO Users

Next, we discuss how to maintain the reputation of users within a VO and within

a VBE according to their usage of VO services. In this model, users, denoted by

set VOUser , are seen as entities who could execute some pre-defined actions on

services following pre-established policies. Services, denoted by set Srv , are seen

as consumers that qualify users in relation to their actions. If a user attempts

to execute an action that is not allowed by the VO policy, it will be given a bad

qualification by the service that would be reflected in the user’s reputation. In

some sense, the model here reverses the notions of consumers and entities with

respect to the model of previous section.

The set, Action, denotes the set of possible actions that can be performed on

services. A policy indicates the set of actions a user is allowed to perform on the

service in a VO. It represents the expected behaviour of the user.

policy : VOUser × Srv × VOId → PAction

A penalty function penalises a user with a value in the interval [0, 1) if he executes

non-permitted actions

77

1.3 Reputation Management

penalty : VOUser × Srv × VOId

×Action → [0, 1)

∀ u : VOuser , s : Srv , vo : VOId , a : Action •
(u, s , vo, a) ∈ dom penalty ⇒

a 6∈ policy(u, s , vo)

Now, events are defined as follows:

Event == TimeStamp × Srv × VOUser×
{Usage} × VOId × Action

where Usage is a name indicating the service-usage issue of interest. We assume

the existence of functions, policy and penalty , that are used to define the utility

that a service gets according to the actions performed by a user in a VO. These

functions are domain-specific, and based on them, once can define the utility

function as follows.

utility : Event → R

∀(r , u,Usage, vo, a) ∈ Event •
utility((r , u,Usage, vo, a)) ={

1, if a ∈ policy(u, r , vo)

1− penalty(u, r , vo, a), if a 6∈ policy(u, r , vo)

We can now define the reputation of a user using the reputation functions defined

in Section 1.3.4. Here User rep eic denotes the reputation value given by a

particular service to a VO user in relation to the Usage of the service in a VO.

User rep ei represents the reputation of a user taking into account its service

usage in a VO; it aggregates the reputation of the user for all services he uses

in the VO. User rep e denotes the reputation of a user in a VO; it corresponds

to an aggregation of the reputation of all his issues of interest. Since we have

only one issue of interest, User rep ei and User rep e are equivalent. Finally,

User rep indicates the reputation of a user in the VBE.

78

1.3 Reputation Management

User rep eic == rep eic[Time, Srv ,VOUser ,

{Usage}]
User rep ei == rep ei [Time,VOUser ,

{Usage}]
User rep e == rep ei [Time,VOUser]

User rep == rep[Time,VOUser]

1.3.5 A Reputation Management System

Here we present the architecture of a VO that uses reputation management in

order to facilitate the rating of both VO services and users. The architecture was

implemented in the EU FP6 project GridTrust1. In this architecture, the VO

Management subsystem consists of other services in addition to the Reputation

Management (RM) service, such as a VO Manager (VOM), a Reputation-aware

Service Broker (RSB) and a Service Usage Control and Monitoring (SUCM)

service. The system is shown in Figure 1.6.

Figure 1.6: Reputation Management in VOs

The VOM informs the RM service of the setting up of a new VO, which

1http://www.gridtrust.eu

79

1.3 Reputation Management

includes the registration of the list of VO services and users, as shown in the

following protocol:

VOM→ RM : setVO(VO ID, Service ID List, User ID List)

RM→ VOM : ack()

Where VO ID is the identity of the VO being registered, Service ID List is the

list of services of the VO, and User ID List is the list of users in the VO. On

the other hand, the termination of an existing VO is carried out through the

following protocol:

VOM→ RM : endVO(VO ID)

RM→ VOM : ack()

Where VO ID is the identity of the VO being terminated. The RSB service

is used during the setting of new VOs by the VOM. During this phase, the RSB

may request from the RM service the reputation of a service in a particular VO

or in the general VBE before proposing it to the VOM:

RSB→ RM : getServiceRep(Service ID, VO ID)

RM→ RSB : return(Service ID, Reputation Value)

In case the VO ID is assigned a NULL value, the returned reputation will be the

service’s reputation in the general VBE.

The SUCM service is a service that monitors requests and replies sent to and

from a service in its interaction with a VO user. The SUCM service can detect

any undesirable behaviour by the user in its usage of the service being protected

by that instance of SUCM. This could be for example the excessive storage of

data on resources underlying the service beyond the user’s quota. Hence, the

SUCM service can report prohibited actions performed by the VO users to the

RM service as follows:

SUCM→ RM : reportUser(Service ID, User ID, VO ID, Action)

RM→ SUCM : ack()

80

1.3 Reputation Management

The RM service can also accept ratings by the VO users of the QoS levels they

have experienced in their interactions with VO services. This is done through the

following protocol, in which the user reports the QoS value:

User→ RM : rateService(User ID, Service ID, VO ID, QoS Value)

RM→ User : ack()

Finally, any of the entities in a VO may request from the RM service the

reputation of a user:

Any→ RM : getUserRep(User ID, VO ID)

RM→ Any : return(User ID, Reputation Value)

Again, in the event that the VO ID is assigned a NULL value, the returned

reputation will be the user’s reputation in the general VBE.

1.3.5.1 Usage Scenario

We consider here an example of a usage scenario of the RM system as shown in

Figure 1.7. We assume that a RSB starts by querying the RM system for the

reputation of a couple of services, Service1 and Service2, in order to join them

to a new VO. After that, the VOM signals to the RM system the setting up of

the new VO and informs the latter of the two services and three users, User1,

User2 and User3. Once this operation is acknowledged by the RM system, the

VO becomes operational and the users can avail of the services offered.

At some stage, the SUCM service at Service1 captures a prohibited action

performed by User3 and thus reports it to the RM system. Based on the utility

function for Service1 and the penalty for the prohibited action, the RM system

computes the satisfaction of Service1 regarding this action and updates accord-

ingly the different reputation values for User3. Some time later, the SUCM service

for Service1 requests to obtain the new reputation value for User3. Based on this

new value, SUCM revises its decision to grant access to User3 to use Service1.

This may or may not change the access right for User3. Finally, the VOM decides

to end the VO (e.g. as a result of achieving its goals) and informs the RM system

81

1.3 Reputation Management

Figure 1.7: Usage Scenario of the Reputation Management System

of this decision. The RM system acknowledges this decision.

1.3.6 Analysis of the Reputation Models

This section describes the results we obtained by performing simulations with

various VO setups. We have run our experiments using the SimGrid simula-

tor [Legrand et al., 2003] on which we implemented the following VO operation

scenarios:

• VOs with reputation-rated resource providers;

• VOs with reputation-rated users; and

• VOs with reputation-rated resource providers and rated users.

In all simulated scenarios, we compared the results against the case when repu-

tation is not considered to enhance resource management in VOs.

82

1.3 Reputation Management

We emphasize from the very beginning on the advantages of our reputation

model. First, because we base our model on a-priori collected utility functions,

we eliminate one of the biggest drawback of reputation-based trust: the subjec-

tivity of the collected feedback. If the service consumer does not provide truthful

information, the provider will be unable to compile the real utility function and

will deliver the service accordingly. Thus, as the rational consumers desire to

obtain the expected quality of service, they can not manipulate the reputation

of a provider without suffering themselves from worsening the received service

quality.

Second, our virtual environment is equipped with a trustful reputation man-

ager. Thus, all messages containing valuable information for computing the rep-

utation can not be tampered by malicious nodes. As the reputation manager

collects all the individual utility functions, it can unify the perception about the

service delivery via the computed reputation measure.

With our reputation model we tackle a major drawback of the quality of

service measurement: the fact that various nodes in the system have different

representations about which is a good quality delivery.

1.3.6.1 VOs with reputation-rated resource providers

First, we considered a VO with users submitting requests to resource providers

for a service. We allow 20% of the providers to produce random QoS values

uniformly distributed in a variation band between 85− 105% of the agreed SLA

expected quality. For scheduling the requests to VO nodes we used the Res rep e

value and we allowed that each node will obtain a number of service reuqests

proportionaly with its reputation. For a batch of jobs originating from the VO

users, we computed the total completion time and the total welfare produced in

the system. Total welfare is obtained by suming all utilities acquired by the users

for the submitted jobs. We varied the load factors of the system. The load factor

is defined as the proportion of the requested system capacity at a given moment

of time vs the total available capacity to be delivered by the VO. For comparison,

we allowed the resource broker to schedule the requests in a round-robin fashion.

Figures 1.8 and 1.9 show the results.

We should note that with using a reputation-based scheduling, the total com-

pletion time is better with around 25% for every load factor of the system. More,

83

1.3 Reputation Management

Figure 1.8: Comparing reputation-based scheduling with round-robin: comple-

tion time

the system produses 25% much welfare with reputation. The gain in welfare was

registered due the fact that the reputation manager has a global view about the

quality of the service - through the a-priori collected utility functions. Thus, it

can enhance the borkering by selecting appropiate providers for a given consumer.

1.3.6.2 VOs with reputation-rated users

Next, we simulate the system with unreliable users. An unreliable user tries to

execute un-permitted actions. We set the fraction of unreliable users to f = 20%,

each introducing malicious actions with a sabotage rate of s = 20%. Each action

gets a random penalty from [0, 1). Each un-permitted request is identified and

refused by the system after its execution and its result gets discarded and never

reaches back the user. We should note that the system is now loaded with a

fraction fs of malicious requests and it spends some useless time to fulfill those

requests.

To simulate this setup, we use a resource centric brokering approach: for

an available resource, the next action/job is selected from the available ones

84

1.3 Reputation Management

Figure 1.9: Comparing reputation-based scheduling with round-robin: welfare

according with the reputation of the user who entered the action in the system.

For reputation, we used the User rep e value. Such a broker will postpone

the execution of an action originating at a less reputed user as late as possible,

maximizing the efficiency of the spent running time of the resource. Figure 1.10

shows how the proportion of time spent on processing trustful actions varies

during the VO existence. We compared the reputation-enhanced broker with a

broker that schedules the tasks on the first-come first-served principle.

We can note that at the beginning of the VO life, the reputation-enhanced

broker (depicted with dotted line) schedules only tasks/actions coming from re-

puted users. The broker starts to schedule tasks from less reputed users only

when tasks get scarce in the VO. More, we can note that the overall fraction of

time spent on tasks computing is bigger than in the case of a first-come first-

served broker. Thus, the reputation manager succeeds to perform a distinction

between malicious users and the truthful ones, enabling an enhanced brokering

of the reputed users tasks.

85

1.3 Reputation Management

Figure 1.10: Time consumption efficiency for a system with malicious users. We

allowed 20% of users to be malicious and having a sabotage rate of 20%.

1.3.6.3 VOs with reputation-rated resource providers and rated users

A more complex scheduling is the one that selects the most reputable available

resource and puts on it the job of the most reputable user. This later setup

simulates the case of a VO with unreliable users executing actions on unreli-

able resource providers. Our scheduling intends to protect reputed providers by

assigning on them actions from reliable users.

As a benchmark, we used the FIFO (round-robin) scheduling, at each resource

executing the oldest request in the system.

Figure 1.11 shows the simulation results. We counted the total welfare (sat-

isfaction) produced and we depicted the welfare acquisition curve for each of the

three cases described above. The Y axis plots the proportion of the total satis-

faction perceived by the users during the time. We can note that the case when

the broker is aware both about the reputation of users and of resources allows for

a quicker welfare accumulation. The case when scheduling is done on the basis of

first-come first-serve (in both regarding the resources and the user actions) is the

worse, letting the users to accumulate satisfaction only latter in time. We should

note that by the middle of the simulation, for a total of about 4% (20%x20%)

86

1.3 Reputation Management

malicious actions, we get about 10% more satisfaction acquired.

Figure 1.11: Reputation based scheduling with user and resource reputation. We

allowed 20% of users to be malicious and having a sabotage rate of 20%.

We should note that in VOs with reliable users and unreliable resources, the

reputation-based approach increases the overall system performance in the sense

that tasks get faster executed. With unreliable users, using the reputation-based

approach the system increases the user satisfaction by allowing trustfull users to

benefit first. Furthermore, the reliable resources are used more effective, in the

sense that trusted actions are assigned on them.

1.3.7 Conclusion and Future Work

Trust in distributed computing is an important area of research, which contributes

to the strengthening of security and the enhancement of the robustness of infor-

mation sharing. Reputation is one measure by which trust can be quantified and

reasoned upon.

Our main contribution in this research direction was to define a model for rep-

utation management in collaborative service-oriented virtual organisations that

is based on utility computing and that can be used to rate users according to

87

1.3 Reputation Management

their service usage and service providers and their services according to the qual-

ity of service they deliver. We also demonstrated, through Grid simulations, the

behaviour of the model regarding completion time and welfare, both of which

showed improvements over non-reputation-based VOs.

There are several areas in which our model can be extended and improved.

The portability of reputation across VBEs is one such area in which an entity or

a consumer who change their community (VBE) can bring along their reputation

from previous communities to any new ones they join. Another area is to enhance

the model to be able to express the reliability of events by adding weights to them.

Also, the language of the issues of interest is currently left undefined (apart from

the service QoS and service Usage terms). Such a language is domain-specific

and it can be obtained from domain-specific ontologies. Finally, an interesting

area is to model the reputation of orchestrated services based on the reputation

of the individual services. This requires the definition of a reputation composition

operator.

88

1.4 Sabotage Tolerance in Volunteer Computing

1.4 Sabotage Tolerance in Volunteer Comput-

ing

In this section, we present our scientific contribution regarding models for tack-

ling sabotage in volunteer computing and desktop grids. Initially, we investigated

models for sabotage tolerance in Silaghi et al. [2008b]. Further, we described

the colluding sabotage behavior and presented a model to tackle nodes collusion

[Silaghi et al., 2008a, 2009]. Our approach was recognized by the scientific com-

munity as the first to describe the colluding sabotage problem for desktop grids

and propose a solution to it [Canon et al., 2010]. We further contributed to define

a more sophisticated sabotaging behavior and investigate a solution based on the

maximum independent set concept [Araujo et al., 2011]. In this section, we will

emphasize on the scientific contributions developed in Silaghi et al. [2008a, 2009],

and we will shortly brief MIS-based approach of Araujo et al. [2011].

Desktop Grid systems reached a preeminent place among the most powerful

computing platforms in the planet. Unfortunately, they are extremely vulnerable

to mischief, because computing projects exert no administrative or technical con-

trol on volunteers. These can very easily output bad results, due to software or

hardware glitches (resulting from over-clocking for instance), to get unfair compu-

tational credit, or simply to ruin the project. To mitigate this problem, Desktop

Grid servers replicate work units and apply majority voting, typically on 2 or 3

results. In our contribution, we observe that simple majority voting is powerless

against malicious volunteers that collude to attack the project. We argue that

to identify this type of attack and to spot colluding nodes, each work unit needs

at least 3 voters. In addition, we propose to post-process the voting pools in

two steps. i) In the first step, we use a statistical approach to identify nodes

that were not colluding, but submitted bad results; ii) then, we use a rather sim-

ple principle to go after malicious nodes which acted together: they might have

won conflicting voting pools against nodes that were not identified in step i . We

use simulation to show that our heuristic can be quite effective against colluding

nodes, in scenarios where honest nodes form a majority.

89

1.4 Sabotage Tolerance in Volunteer Computing

1.4.1 Research objective

Internet Desktop Grids [Anderson, 2004; Cappello et al., 2005] aggregate huge

distributed resources over the Internet and make them available for running a

growing number of applications. In 2007, BOINC [Anderson, 2004], the most

popular desktop grid (DG) platform, runs about 40 projects, aggregating more

than 400,000 volunteer computers yielding on daily average more than 400 Ter-

aFLOPS [Anderson and McLeod, 2007]. Numbers are even larger by now, BOINC

reporting more than 5500 PetaFLOPS, as of start of February 2012.

A major concern in such a middleware is the support for sabotage tolerance

(ST). Since computations run in an open and non-trustable environment, it is

necessary to protect the integrity of data and validate the computation results.

Without a sabotage-detection mechanism, a malicious user can potentially un-

dermine a full computation that may have been executing during weeks or even

months [Domingues et al., 2007].

All important ST techniques designed up-to-date for Internet DGs are based

on the strong assumption that workers are independent from each other. While

this assumption is fulfilled, actual sabotage tolerance techniques perform very

well, supplying the required (very low) error rate for the overall computation.

In particular, BOINC uses replication with majority voting which can bring an

error rate of about 1 × 10−5 by validating each result with only two similar

responses [Kondo et al., 2007]. But, as Zhao et al. [2005] acknowledge, a potential

threat comes up when workers can devise some scheme to interact, for example,

with a distributed hash table.

However, there are many signs suggesting that this kind of peer-to-peer in-

teraction among peers will become a standard in the near future. For example,

collaborative techniques are very attractive for data distribution [Costa et al.,

2008; Wei et al., 2005], especially when the DG runs a parameter sweep appli-

cation. More, research advance in the direction of an entirely distributed P2P

desktop grid [Kim et al., 2007]. BitDew [Fedak et al., 2008] platform is functional,

providing services for management and distribution of data on DGs. Currently,

it supports the data distribution for the new MapReduce computing paradigm

[Tang et al., 2010], emerging on top of the Desktop Grids.

While very powerful and well intentioned, all these solutions bring a side effect

90

1.4 Sabotage Tolerance in Volunteer Computing

with them: they can help malicious workers to team up to defeat the project,

thus violating the workers’ independence assumption.

Further, a P2P-enhanced desktop grid might become the target for a Sybil

attack [Douceur, 2002]: an individual either creates multiple identities which

appear as individual ones to the master or gets control through a virus over a

large number of workers. Such a powerful individual can develop a collective

malicious behavior if the platform allows for peer-to-peer interaction.

This brings new challenges to the design of a desktop grid system, because the

master is not prepared to fight potential collective malicious behaviors, resulting

from orchestrated workers.

To face the new collusion threat, we proposed and developed for the first time a

novel approach as a complement to the actual replication-based mechanism, which

is the most popular ST technique employed in the nowadays middleware. With

replication, the master decides about the trustworthiness of a result immediately

after having collected all replicas of a work unit. Instead, in our approach the

master will postpone the decision moment in the replicated voting pools until

it gathers enough information to infer the trustworthiness of the workers. We

present a statistical tool to analyze together the voting pools and to infer and

classify a worker as being malicious or not. Further, the master can mark a

voting pool as being suspicious if a honest worker is losing the decision. On these

voting pools, the master can apply further replication in order to conclude about

the valid result. We first presented this technique in Silaghi et al. [2008a]. In

the journal version [Silaghi et al., 2009], we presented a larger set of experiments,

including comparisons with k-means [MacQueen, 1967], one of the most well-know

clustering algorithms.

In contrast to other works on ST in DGs [Sarmenta, 2002; Zhao et al., 2005], we

evaluate our approach considering a wider range of malicious saboteurs, including

naive and colluding ones, as well as transient saboteurs which change their profile

during their life.

Our scientific contribution was recognized as the first one to acknowledge

the collusion threat for volunteer computing environments [Canon et al., 2010].

Therefore, scientific community came out with other approaches to tackle this

problem [Canon et al., 2010, 2011; Staab and Engel, 2009; Watanabe et al.,

2009a]. We further contributed to another graph-based approach against much

91

1.4 Sabotage Tolerance in Volunteer Computing

more subtle colluding attackers [Araujo et al., 2011].

This section is further organized as follows. In subsection 1.4.2 we define

the type of saboteurs our approach covers and make a discussion about how

efficient the respective sabotage strategies are. In subsection 1.4.3 we present our

collusion-resistant sabotage tolerance technique. We start by showing how we

can statistically model the voting behavior of workers and how we can classify

the workers in malicious and not malicious ones. Next, we present our global

sabotage tolerance protocol. In subsection 1.4.4 we present and discuss the results

obtained with our sabotage tolerance protocol. In subsection 1.4.5 we shortly

brief the maximum independent set approach to tackle the saboteurs that are

aware the master employs the approach described in subsection 1.4.3. Finally,

subsection 1.4.6 concludes this chapter.

1.4.2 Background

A desktop grid system consists of a server (referred further as the master) which

distributes work units of an application to workers. Workers are machines which

voluntarily join the computation over the Internet. Once a work unit is completed

at the worker site, the result is returned back to the master. A result error is any

result returned by a worker that is not the correct value or within the correct

range of values [Kondo et al., 2007].

The error rate ε is defined as the ratio of bad results or errors among the final

results accepted at the end of the computation. Thus, for a batch of N work

units with error rate ε, the master expects to receive εN errors. For every appli-

cation, the master employs some sabotage-tolerance mechanism for obtaining an

acceptable error rate εacc with regard to its application.

Redundancy is defined as the ratio of the total number of replicas assigned to

workers to the actual number N of work units. Usually, redundancy is larger than

1, which means that we spend computing resources only for verification purposes.

Below, we present the state-of-the-art research regarding sabotage tolerance

in desktop grids and volunteer computing

92

1.4 Sabotage Tolerance in Volunteer Computing

1.4.2.1 State-of-the-art

In volunteer computing, the sabotage tolerance concept was firstly coined by [Sar-

menta, 2002], to present techniques that can overcome the presence of malicious

volunteers in the contributors set. Early works on sabotage tolerance [Anderson,

2004; Du et al., 2004; Golle and Mironov, 2001; Sarmenta, 2002] assume a basic

naive model of saboteurs. These workers make mistakes with some individual

sabotage probability, independently of the behaviors of other nodes.

Given these assumptions, majority voting-based replication [Anderson, 2004;

Sarmenta, 2002; Taufer et al., 2005] was conceived as a simple but very effective

[Kondo et al., 2007] tool to fight saboteurs. The master distributes 2m−1 replicas

of a work unit to workers and when it collects m similar results, it accepts that

result as being the correct one. Each collected result is seen as a vote in a voting

pool with 2m− 1 voters and with majority agreement being the decision criteria.

For this basic naive behavior, other more complicated techniques were de-

vised, including result verification based on sampling [Du et al., 2004; Golle and

Mironov, 2001; Watanabe et al., 2009b; Zhao et al., 2005] and credibility [Sar-

menta, 2002; Watanabe et al., 2009b; Zhao et al., 2005]. Sampling means that

the trustworthiness of each worker is verified from time to time, e.g. by adminis-

trating them some quizzes or by auditing their results. If a worker result is found

erroneous, that worker is blacklisted, in the sense that all its previously and fu-

ture results are discarded. In credibility-based schemes, the master observes the

behavior of workers during the computation and estimates their reliability. It

assumes that hosts that have computed many results with very few errors are

more reliable than hosts with a history of erroneous results. This method has

problems to fight against hosts that behave well for a long period of time, in order

to gain credibility, and after that start to sabotage.

To be effective, sampling and credibility is often combined with wise schedul-

ing techniques [Choi and Buyya, 2010; Watanabe et al., 2009b].

Kondo et al. [2007] proved the effectiveness of replication in BOINC-like se-

tups, demonstrating that an error rate of 10−2 per project can be achieved, given

the real-life observed behavior of workers. Replication has the big drawback of

the computation cost - each task being scheduled to at least two workers. Sam-

pling and credibility leave the door open for other attacks: a worker can behave

93

1.4 Sabotage Tolerance in Volunteer Computing

well for a long period of time in order to gain reputation and attack after that.

With only naive saboteurs, Wong [2006] exploits the graph of nodes reflecting

how these nodes are linked together in voting pools. This protocol represents

a variation of the replication with only 2 replicas and allows the host to esti-

mate, without auditing, the proportion of untrusted workers and how often these

workers would submit incorrect results.

For the naive model of saboteurs, a detailed discussion can be found in

Domingues et al. [2007]. Choi and Buyya [2010] develop a taxonomy of result

verification methods, including voting, sampling and reputation.

We introduced [Silaghi et al., 2009] more sophisticated malicious behaviors in

volunteer computing, further detailed in subsection 1.4.2.2. Given that some out-

of-band communication is enabled between workers, they can collude and attack

in concentration. To detect the colluding behavior, in this chapter we described a

statistical tool, which combined with further result audits, removes the negative

effects of nodes collusion on the global computation.

The collusion problem was also analyzed by Staab and Engel [2009]. Based on

the probability that two nodes are together in the same majority/minority group

of a vote, they arrange the nodes in an undirected weighted graph and employ

a clustering procedure to partition the graph in a cluster of nodes that correlate

highly. This approach is very effective when the correlation probability of two

nodes is estimated based on more than 10 observations in average, which might

be difficult to attain in practical distributed system setups, characterized by a

huge number of nodes and a very low probability that two nodes meet together

in more than two voting pools.

Canon et al. [2010] evaluate a setting close to our own. They present two al-

gorithms implementing a dynamic merge/split of groups of nodes with collusion

or agreement behavior, given that workers behavior is stationary during their

participation in the system. They conclude that the collusion method is slightly

better than the agreement one, while the agreement one is much simpler to imple-

ment because it does not rely on an external result certification mechanism. To

defeat malicious collusion, Canon et al. [2011] develop a combined scheduling and

certification algorithm, based on the previously characterization of the workers’

behavior.

From the simple master-worker computing model that stays at the foundation

94

1.4 Sabotage Tolerance in Volunteer Computing

of the desktop grid computing platforms [Anderson, 2004; Cappello et al., 2005],

in the last years desktop grids adopted more sophisticated computational models,

including MapReduce [Tang et al., 2010]. Within this new computation model,

various solutions were considered to handle the saboteurs. We mention here the

work of Moca et al. [2011] who analyzed the effectiveness of simple replication

with MapReduce; Wei et al. [2009] who designed secure components of a MapRe-

duce desktop grid based on replication and Wang and Wei [2011] who propose a

framework towards a secure Hadoop MapReduce with combination of replication

and sampling to deal with collusive and non-collusive mappers.

In general, the problem of collusion in voting pools go larger beyond the vol-

unteer computing setup, fitting the Byzantine model [Lamport et al., 1982] of

errors of the distributed computing theory. For example, Fernandez et al. [2006]

consider sets of binary tasks (with 0 or 1 output) controlled by a master and dis-

tributed to workers, similarly as in a desktop grid. They compute upper bounds

for the computational effort of volunteers, given some limitations on the power

of (Byzantine) malicious nodes. Electronic commerce is another setting that can

be modeled with voting pools (games) and is also subject to manipulation. Tsve-

tovat and Sycara [2000] show that coalitions among customers can be formed to

buy many items from the buyer at a lower price and further, to benefit from this.

Anonymous environments (like the Internet), with the same players bidding in

successive voting pools allow manipulation, which is almost impossible to detect

[Yokoo et al., 2005], or voters collusion [Vragov, 2005]. In combinatorial Inter-

net auctions, the concern was to develop anonymity-proof interaction protocols

[Yokoo et al., 2005] or false-name proof protocols [Yokoo et al., 2004]. In our dis-

tributed computing setup, we rely on the standard master-worker computational

model with its simple pull or push scheduling; we differentiate from this huge

amount of literature originating in artificial intelligence as we do not design the

interaction. We search for the manipulation (sabotage) after it happened and try

to limit its effects on the desktop grid system.

1.4.2.2 Sabotaging behaviors

To characterize erroneous hosts, we consider two models that define extreme

behaviors: the first behavior is the naive malicious, where a node randomly

commits mistakes in some work units independently of the behavior of other

95

1.4 Sabotage Tolerance in Volunteer Computing

nodes. Note that this could possibly happen because the node is faulty, due,

for instance, to malfunctioning hardware. In the other extreme, we consider

the colluding nodes that make their behavior depend from the participation of

other malicious nodes in the voting pools. They introduce errors only when they

are sure that their sabotage can be successful, for instance, when they know

that other malicious nodes are participating in the voting pool, thus forming a

majority. While naive malicious nodes expose themselves to be detected and

possibly black-listed in a rather easy way, the colluding voters are much more

subtle and can easily pass undetected.

We denote the basic naive malicious node by M1-type. A M1-type worker

submits bad results with a constant probability s , called sabotage rate. This

naive sabotage model assumes that workers are independent of each other and

do not communicate. Even if independent workers which do not communicate

are very unlikely to submit the same erroneous result, as the sabotage tolerance

literature suggests [Sarmenta, 2002], from now on, we assume that all submitted

erroneous results are similar, regardless whether the workers can communicate or

not.

If we assume the existence of a fraction f of M1-type saboteurs in the total

population of workers, then the expected error rate εM1(f , s ,m) of the majority-

voting replication is given by Equation (1.1) [Sarmenta, 2002]:

εM1(f , s ,m) =
2m−1∑
j=m

(
2m − 1

j

)
(fs)j (1− fs)2m−1−j (1.1)

Unlike the basic M1-type, a colluding saboteur (further referred as M2-type)

has the will and the means to reach other saboteurs in order to develop malicious

coalitions. In model M2, a dishonest worker w will sabotage only if it finds enough

dishonest peers to join it to defeat the honest nodes involved in the same voting

pool. Thus, a M2-type malicious worker will never sabotage without winning the

decision in its voting pool. We assume that there is a complete graph connecting

all the malicious nodes, such that communication between any two malicious

nodes is always possible at any point in time. However, at this stage of our

work, we impose a limit to the power of malicious nodes: they are not aware

of our sabotage detection mechanisms and they act to conceal themselves from

majority voting. With this assumption, colluding saboteurs will attack whenever

96

1.4 Sabotage Tolerance in Volunteer Computing

they are sure they can win the voting decision against honest workers.

If the fraction of M2-type saboteurs in the total population of workers is f ,

each saboteur being an active one with probability s (i.e. s is the probability

of a colluding saboteur to launch the coalition-formation protocol), each of them

knowing all the rest of the workers, then the expected error rate is given by

Equation (1.2).

εM2(f , s ,m) =
2m−1∑
j=m

(
2m − 1

j

)(
1− (1− s)j

)
f j (1− f)2m−1−j (1.2)

In eq. (1.2) we have to mention that at least one of the j M2-type workers

in a voting pool is sufficient to start (with probability s) the collusion formation

protocol, the remaining colluding saboteurs in the voting pool participating by

default to the coalition. This leads1 to the multiplication term 1− (1− s)j before

f j , which denotes the probability of finding exactly j M2-type workers in a voting

pool of size 2m − 1.

We consider yet another type of saboteurs deemed M3-type, mixed malicious,

which change their behavior during their life, behaving either naive or colluding,

but always performing a dishonest role. For an M3-type saboteur, we denote

with c the naive ratio, which is the fraction of work units for which the worker

behaves as an M1-type saboteur with sabotage rate s1, while for the remaining

1−c fraction of work units it behaves like a M2-type saboteur with sabotage rate

s2. In this case the expected error rate is the one of Equation (1.3):

εM3(f , c, s1, s2,m) = cεM1(f , s1,m) + (1− c)εM2(f , s2,m) (1.3)

Given that M1-type saboteurs submit a rather small fraction s of bad results

(with an average of 0.0034 for independent I/O errors [Kondo et al., 2007]), it

results that colluding saboteurs are much more destructive than independent

ones. Figure 1.12 shows the comparison of the error rates achieved with different

number of identical results required m, for f = 0.035 and s = 0.0335 in the

1the overall probability that at least one worker out of j starts the collusion formation

protocol, given the individual probability s is:
(
j
1

)
s(1 − s)j−1 +

(
j
2

)
s2(1 − s)j−2 + ...

(
j
j

)
s j =

1− (1− s)j

97

1.4 Sabotage Tolerance in Volunteer Computing

Figure 1.12: Error rates comparison between various types of malicious workers

against simple replication

case of both M1-type and M2-type saboteurs1. To allow for a better comparison,

we used the same value of s = 0.0335 for all types of colluders in Figure 1.12.

However, colluding saboteurs would be much more destructive if they always

try to sabotage, i.e., if s = 1 (naturally, this can leave more traces of their

intervention). The error rate of M3-type saboteurs is something in between M1

and M2-types, being much closer to the latter. We considered c = 0.5 for an

M3-type saboteur, while keeping the same f and s1 = s2 = s .

We define the effectiveness of a saboteur as being the ratio between the num-

ber of times it succeeds to defeat the sabotage tolerance mechanism versus the

total number of times it sabotages. While naive saboteurs succeed to defeat the

master’s replication-based sabotage tolerance mechanisms only in a small fraction

of the attempts, a colluding saboteur will sabotage only when it is sure to win

the majority voting, and therefore, its effectiveness is total (1). Of course, the

effectiveness of a naive saboteur increases with its sabotage rate s ; this being the

1We assumed the same error rate parameters as for the top 10% erroneous hosts reported

by Kondo et al. [2007].

98

1.4 Sabotage Tolerance in Volunteer Computing

Figure 1.13: Relative effectiveness comparison between various types of malicious

workers against simple replication

sole parameter such a saboteur can control. Figure 1.13 depicts the number of

times colluding saboteurs of type M2 and M3 are more effective than the naive

ones for various number of results required. The effectiveness of the saboteurs

was computed for the same parameters as in figure 1.12. The effectiveness of

the M2-type saboteurs was computed assuming that they sabotage only when at

least a coalition of size 2 is formed. The relative effectiveness of the colluding

saboteurs increases exponentially with the number of results required, because

the success rate of naive saboteurs is very small in the presence of higher-order

replication.

We should also note that besides being less destructive, naive saboteurs leave

more traces behind them, making it much easier for the master to spot them out.

1.4.3 A collusion-resistant sabotage tolerance protocol

In this section we propose a collusion-resistant sabotage tolerance protocol. Since

the actual replication works very well in the presence of M1-type naive saboteurs,

99

1.4 Sabotage Tolerance in Volunteer Computing

we do not intend to replace it. Instead, we complement it with a scheme targeted

to spot and defeat colluding saboteurs, which are much more effective and can

defeat the replication, as we have seen in subsection 1.4.2.2.

1.4.3.1 Overview

Kondo et al. [2007] demonstrated that replication with m = 2 is enough to

cope with erroneous hosts with M1 saboteurs. Additionally, we observe that DG

projects that we are aware of, set m to be 2 at most, while some of them initially

use only two replicas and ask for another one in case of conflicting responses.

Therefore, in our work we fix m = 2. This means that the master replicates

each task 2m − 1 = 3 times. However, instead of deciding on a result as soon

as the master gets a majority of 2 similar responses, it will wait and postpone

the decision until it gets all three results from that work unit and until it collects

enough results of related workers from different work units. We further consider

each work unit as a voting pool, where each worker is worth a vote. After it

collects a number of voting information (the most it collects the better), the

master will analyze the information acquired from the voting behavior and will

infer which are the M1-type naive saboteurs. The rationale for this is that, once

these nodes are identified, the remaining contradictory voting pools only contain

colluding nodes of type M2 and M3. Then, the master will reconsider these work

units and ask for further responses.

The master’s objective is to spot out malicious workers, regardless of the

sabotage model they fit in. From this point of view, a voting pool that contains

contradicting votes is of interest for the master, because it contains, at least

one faulty node. If the size of the voting pool is 3, this means that one loosing

worker voted against two opponents. A valuable observation is that in the case of

naive M1-type workers, the total number of such conflicting voting pools is higher

than in the case of M2 saboteurs, for the same f and s , regardless their value.

This makes it easier for the master to spot out naive saboteurs than colluding

ones. While a hybrid M3 saboteur has a mixed behavior switching between being

naive and colluding, this model will give us less clues than naive saboteurs, but

more clues than with colluding ones. Therefore, given that M2 and M3 nodes are

not aware of our sabotage tolerance mechanism and only try to defeat majority

voting, we expect a better response against M3 than against M2 saboteurs. Figure

100

1.4 Sabotage Tolerance in Volunteer Computing

Figure 1.14: Comparison of conflicting voting pools

1.14 shows the percentage of conflicting voting pools for various s , given f = 0.1,

in pure populations with only M1-type (respective M2-type) saboteurs.

Considering a conflicting voting pool, it would be of interest for the master

to assess if the worker that is losing the decision is behaving like a naive M1-type

saboteur or not. The master can do this assessment if it possesses a theoretical

model of the voting pools world and a classification tool, which we will describe

in the following section.

1.4.3.2 Statistical modeling of the voting behavior

Consider a population SP consisting of honest and malicious workers. Table

1.2 describes the meaning of each structure parameter. We impose that honest

workers are in majority, i.e., f1+f2+f3 < 0.5. To enable evaluation, we assume that

the population structure is stable over time and the workers fully comply with

their models during all their life. Additionally, there is an implicit assumption in

the models of workers that we devised: nodes are unaware of the algorithm used

by the master to spot collusion. Let the master distribute replicated tasks from

a set of work units SW , such that, on average every worker gets N tasks.

101

1.4 Sabotage Tolerance in Volunteer Computing

Table 1.2: Parameters describing the population structure

f1 proportion of M1-type workers

s1 sabotage rate of M1-type workers

f2 proportion of M2-type workers

s2 sabotage rate of M2-type workers

f3 proportion of M3-type workers

c naive ratio for M3-type workers

s3,1 sabotage rate of M3-type workers while behaving as M1-type

s3,2 sabotage rate of M3-type workers while behaving as M2-type

A voting pool V = {v1, v2, v3} is a set of three (m = 2) different workers vi ∈
SP , each of which submitting a binary vote in the pool. Consider a fixed worker

v ∈ V . The number of votes against the worker collected in the voting pool V

can be modeled as a random variable Yv : {0, 1, 2} → R, where Yv(i) = pv ,i ≥ 0

is the probability that the worker v has i votes against in the voting pool V ,

with
∑

i pv ,i = 1.

Due to the i) population structure stability; ii) worker’s fully compliance

with its model; and iii) the fact that workers can not influence how the master

distributes them in the voting pools, any two voting pools for the same worker

are statistically identical and independent and thus, we can model the behavior

of a worker during a sequence of N voting pools as a multinomial experiment

with N trials Yv .

We denote by Yv ,N : {0, 1, . . . , 2N } → R the random variable defining the

probabilities for the worker v to collect a given number of votes against over a

total of N voting pools.

From the independence between two different voting pools, we can infer that

Yv ,N =
∏N

t=1 Yv = Y N
v . 1 In our case, as every Yv is defined over the set {0, 1, 2},

for the sake of simplicity, the discrete values of the random variable Yv ,N can

be obtained by computing the corresponding coefficients of a polynomial like the

1Given 2 random variables Y1 : {xi , i = 1, . . . ,n1} → R+, Y1(xi) = pi ,
∑

i pi = 1 and Y2 :

{x ′i , i = 1, . . . ,n2} → R+, Y2(x ′i) = p′i ,
∑

i p
′
i = 1, the product Y = Y1Y2 is defined by over

the space {xi ∧x ′j , i = 1, . . . ,n1, j = 1, . . . ,n2} with the following expression: Y (xi ∧x ′j) = pip
′
j .

102

1.4 Sabotage Tolerance in Volunteer Computing

one of Equation (1.4):

(pv ,0 + pv ,1X + pv ,2X
2)N (1.4)

These coefficients can be computed either by successively multiplying the polyno-

mials (as we did) or by applying the multinomial theorem and using the trinomial

coefficients [Karlin and Taylor, 1975].

As an example, if the random variable of a worker v is Yv = {0.6, 0.2, 0.2},
meaning that the worker scored 0 votes against in 60% of cases, 1 votes against

in 20% of cases and 2 votes against in 20% of cases, if the worker participated

in 5 voting pools, then random variable Yv ,5 can be obtained by computing the

polynomial (0.6 + 0.2X + 0.2X 2)5: which gives 0.0778 + 0.1296X + 0.216X 2 +

0.2016X 3 +0.1776X 4 +0.1059X 5 +0.0592X 6 +0.0224X 7 +0.008X 8 +0.0016X 9 +

0.0003X 10. The random variable Yv ,5 consists of the coefficients of the before-

computed polynomial and should be read as follows (e.g.): the probability that

after 5 voting pools the worker v registers 6 votes against is 5.92%.

The joint distribution function of a voter v with Yv ,N is Fv : {0, 1, . . . 2N } →
R, defined as Fv(i) = Prob(Yv ,N ≤ i), Fv(i) being the summation of all coeffi-

cients of the polynomial (1.4) up to the i rank.

In the heart of our heuristic lies a simple intuition about the distribution

functions Fv : if we compare Fv for a honest node and for an M1 malicious node

there is a huge separation between both lines, because a typical honest node

gets much fewer votes against than a typical M1 node. For a given population

structure, after determining the initial values pv ,0, pv ,1 and pv ,2 and computing

the coefficients of Equation (1.4) using multiplications of polynomials, we got

distribution function curves like the ones depicted in Figure 1.15. The population

we used to plot these curves was the following: in each of them we considered

f = 0.1 malicious workers. Each worker has some predefined sabotage rate of

0.5 and we assigned once N = 30 and N = 40 work units per worker. First,

in Figure 1.15(a) we considered only naive M1-type workers. In Figure 1.15(b)

we replaced naive M1-type workers with colluding M2-type workers. We can

notice that for the same percentage of the malicious workers (f = 0.1) and the

same sabotage rate (s = 0.5), the gap between the distribution functions for

N = 30 and N = 40 increases, while the distribution function of naive workers

shifts to the right. In Figure 1.15(c) we considered a mix of M1 and M2-type

workers, keeping the proportion of malicious workers identical (f1 + f2 = 0.1). We

103

1.4 Sabotage Tolerance in Volunteer Computing

can notice that the distribution function of the naive malicious is on the right

side, the distribution function of the honest workers is on the left side, while the

distribution function of the colluding malicious is shifted a bit on the right of the

honest workers distribution.

(a) Honest and M1-type

workers

(b) Honest and M2-type

workers

(c) Honest, M1 and M2-

type workers

Figure 1.15: Theoretical distribution functions Fv for various population struc-

tures

After we analyzed extensively various population structures, using the math-

ematical procedure explained in the above paragraph, the following important

conclusions can be drawn out:

• M1-type (naive) saboteurs always collect the biggest number of votes against,

their joint distribution functions being the most-right ones in the graphic;

• for N large enough, there is a clear separation between the distribution

functions Fv for the case of honest workers versus malicious workers;

• the honest workers have the distribution functions on the left side of the

graphic, the distances between a honest worker distribution and a naive

(M1) malicious one being the biggest ones;

• as expected, the distribution function for an M3-type worker, not shown

on the plots due to space consideration, will lay down between distribu-

tion functions of M1 and M2 workers, being placed on the left side of the

distribution for the M1-type workers.

104

1.4 Sabotage Tolerance in Volunteer Computing

1.4.3.3 Spotting out naive saboteurs (M1 or M3)

Based on the theoretical conclusions drawn out in Section 1.4.3.2, we now propose

a method for spotting out saboteurs that behave permanently or intermittently

as naive M1-type ones. This includes M3-type workers.

Suppose that the master distributes a batch of work units, such that each

worker takes place in an average of N voting pools. For some particular worker i ,

the number of voting pools is Ni and the master can count the number of times

c0, c1, c2, the worker registered 0, 1, and 2 votes against, among its work units.

These figures, divided by Ni give the practical (sampled) probabilities p0, p1, p2

(as used in Equation 1.4) for that worker. Applying the procedure described in

Section 1.4.3.2, the master will obtain one distribution function (similar to the

ones of Figure 1.15) for each worker.

Figure 1.16 depicts the distribution functions for workers participating in an

experiment with a population structure with f1 = f2 = 0.1, s1 = s2 = 0.5 and

f3 = 0, for N = 30 and for a small number of nodes (in order to facilitate the

display of the distributions on the plot). As expected from the theoretical results

presented above, the distribution functions of M1-type workers (solid lines) will

agglomerate the right side of the plot, while the ones of the honest workers (circled

lines) and M2-type workers (squared lines) will stay on the centre and left side.

The honest workers that were not placed in voting pools with malicious opponents

have the most left-sided distributions.

For two voters vi 6= vj with the distribution functions Fvi and Fvj computed

after considering all voting pools they took place in, we define in Equation 1.5

the distance between their distribution functions:

d(vi , vj) =
∑

k

(Fvi (k)− Fvj (k))2 (1.5)

Now, consider the symmetrical matrix D = (di ,j) of size n × n, where its

elements are defined as the distances di ,j = d(vi , vj). A row i of this matrix

shows how statistically different is the behavior of worker vi from the rest of

workers in the population. The matrix D can be normalized to a matrix C to

make the values of each row sum 1, by dividing each row by its own sum.

According to the theoretical findings (Section 1.4.3.2), the distances between

naive-behaving saboteurs and the majority of the population should be large.

105

1.4 Sabotage Tolerance in Volunteer Computing

Figure 1.16: Distribution functions for a population with M1 and M2-type sabo-

teurs

Having in matrix C a measure of distance between any pair of nodes, we can

use the EigenTrust algorithm of Kamvar et al. [2003] (Algorithm 1), to give each

node a single global score (its corresponding eigenvalue).

EigenTrust algorithm aggregates private reputation values of a node for other

nodes in the network in order to supply with the global reputation value for each

node. Given that two nodes are assigned with similar private reputation values

from the rest of the nodes in the network, EigenTrust produces global values

closed each to another for those two nodes. In our case, the score produced by

EigenTrust for each node tells us how likely is that node to be dishonest. Kamvar

et al. proved that the algorithm will converge to some global scores vector, ~t ,

if the initial matrix C is not singular. More, the global vector ~t contains only

positive values with
∑

ti = 1.

To avoid obtaining singular matrices, we remove from C the rows and columns

for workers that scored only 0 votes against in all their voting pools. After we

compute ~t , we sort the scores of the nodes in ascending order assuming that

each value represents a discrete probability and we compute their corresponding

106

1.4 Sabotage Tolerance in Volunteer Computing

Algorithm 1: The simple EigenTrust algorithm [Kamvar et al., 2003]

Input data:

C = (ci ,j) a matrix of size n × n, with
∑

j ci ,j = 1

some small error ε

~t0 = (t
(0)
i), with t

(0)
i = 1

n
, for every 1 ≤ i ≤ n

repeat

~t (k+1) ← C T~t (k)

δ ← ‖~t (k+1) −~t (k)‖
until δ < ε

distribution function.

In Figure 1.17 we depict a particular case for this distribution function (for a

population of 1000 workers processing on average N = 30 work units each, with

f1 = f2 = 0.1, s1 = s2 = 0.5). The distribution function registers less than 1000

t-values, because we removed from the population the workers that scored 0 votes

against in all their voting pools (around 50 workers in our case).

In most of our experiments we got a clear “knee” (indicated by the arrow) in

this plot, resulting from the differences between naive saboteurs and remaining

population. Identifying this knee, we can classify the workers in naive malicious

and not naive malicious ones. In the absence of a knee, our algorithm should just

not mark any worker as naive malicious and assume that all of them are either

honest or M2-type nodes (in fact some of the nodes could be M3 behaving mostly

as M2).

To locate the knee, when it exists, we use the second order differences1 of the

vector ~t values, as these emphasize in a clearer way the fast growth in the zone

of the knee. We consider 10 consecutive values in the second differences and we

compute their statistical variance. The knee shows up when these variances go

above a given threshold (see Equation (1.6)). In our experiments we set ϑ = 10−8.

We also tried other thresholds with a difference of up to 3 orders of magnitude

and we noticed no sensible difference. Thus, we can consider θ = ticr , where icr

1Given the vector X = {x1, x2, ...xn}, the first order difference vector ∇X is defined as the

vector ∇X = Y = {y1, ..., yn−1} with yi = xi+1 − xi . The second order difference vector ∇2X

is defined as ∇2X = ∇Y .

107

1.4 Sabotage Tolerance in Volunteer Computing

Figure 1.17: Distribution function and second order differences for the ~t values

is given by eq. (1.6) and classify as naive malicious all workers i such us ti ≥ θ.

icr = max {i | var(ti−10, ti) < ϑ} (1.6)

In section 1.4.4 we will present the classification results. We should be aware

that our final goal is the identification of the colluding saboteurs, while identifying

with high certainty the naive saboteurs represents only an intermediary step.

1.4.3.4 A general sabotage tolerance protocol

The theoretical modeling using multinomial experiments presented in Section 1.4.3.2

allowed us to define the classification procedure presented in Section 1.4.3.3. With

high certainty, the master can identify malicious workers, especially those of type

M1, while keeping the classification error low - as we will see in section 1.4.4.1.

A low classification error means that a small number of false positive workers,

which are in fact honest workers, are reported by the classification scheme. In

this section we go further and define our general sabotage tolerance protocol.

Because actual replication is effective to defeat naive saboteurs, our protocol

108

1.4 Sabotage Tolerance in Volunteer Computing

identifies those cases where a worker that is not classified as (naive) malicious is

defeated, and asks further replication on those voting pools. Therefore, we do

not replace the actual replication-based sabotage tolerance protocol; rather we

complement it with a tool to spot out situations when colluding saboteurs win

against honest ones. Specifically, the master has to employ the general algorithm

described in Algorithm 2.

Algorithm 2: The general sabotage tolerance algorithm

1: Input data:

2: SW : the set of work units, SP : the set of workers

3: Begin

4: SV ← Distribute tasks(SW , SP , 3);

5: SV ,conflicting ← Select conflicting pools from SV

6: SMal ← Identify malicious workers

7: SV ,suspect ← Select suspect pools from SV ,conflicting

8: SV ,err ← Ask 2 more responses on pools from SV ,suspect

9: SM2∪M3 ← Identify colluding workers from SV ,err

10: SV ,suspect1 ← Identify voting pools with consensus of only colluding workers

11: Ask a new voting pool on every V ∈ SV ,suspect1

12: Accept the results for all V ∈ SV by majority voting

13: End

Up to line 4 in Algorithm 2 the master applies the classical replication. In

line 5 the master selects the conflicting voting pools out of the initial replication

results. Next, in line 6, the master applies the classification algorithm of Sec-

tion 1.4.3.3 and obtains a list of malicious workers. In line 7, the master selects

among the conflicting voting pools those where another worker not a malicious

one is defeated. On each of these suspect voting pools, the master ask at most

two new response replicas (line 8), by putting the tasks on honest workers. The

honest workers are selected from the ones that recorded zero votes against or

from the ones that registered the smallest ~t values in the classification procedure.

At the end of this step, the master identifies those voting pools SV ,err where

the initial result was reverted. From these voting pools, the master identifies

the colluding workers (line 9). Next, in step 10, the master traces back all non-

conflicting voting pools where three malicious workers where initially assigned.

109

1.4 Sabotage Tolerance in Volunteer Computing

On each of these voting pools, the master invalidates the initial quorum and asks

a new 3-times replication with honest workers as above. In the end, the master

accepts the results of each voting pool with a majority voting.

1.4.4 Results and discussion

1.4.4.1 Results

In this section we report the results achieved with our sabotage tolerance scheme.

We considered various population structures and we let the master assign tasks

such that each worker gets on average N = 30 tasks (i.e. 10000 work units

for a population of 1000 workers). For each population structure we have run

100 experiments, to get a statistical confidence on our results. However, for

convenience, in our plots we show only the average values.

To evaluate the performance of the proposed sabotage tolerance scheme, we

computed the final error rate and redundancy obtained with our scheme and we

compared them against the ones obtained with the simple replication, before ap-

plying our sabotage tolerance protocol. For a cost estimation, we also compared

the actual redundancy of our scheme against a “theoretical” redundancy that

would be obtained if the sabotage tolerance protocol would ask for another task

replica on each voting pool with conflicting responses. This theoretical redun-

dancy is an optimistic value because it is still not enough for establishing the

correct result of a conflicting voting pool.

But, we are also interested in discovering the colluding saboteurs, i.e. the

ones that get defeated after applying the algorithm presented in section 1.4.3.4.

We can see this task as a classification one and evaluate its performance by com-

puting the classification error and the recall rates. As advised in the data mining

field [Witten and Frank, 2005], the classification error represents the percentage

of incorrectly classified examples (false positives) out of the total retrieved ones

for some class. The recall represents the percentage of the examples of some

class identified by the automated classification procedure. We should note that

obtaining a low classification rate is usually achieved with a cost of a low recall.

In what follows, we will also report the classification error rates and recalls for the

classification tasks performed by our sabotage tolerance protocol. More precisely,

we will report the global results (i.e. classification error rate and recall with re-

110

1.4 Sabotage Tolerance in Volunteer Computing

(a) Error rates (b) Redundancies (c) Classification error

rates and recalls

Figure 1.18: Results obtained for a population structure with only honest and

M1-type nodes

(a) Error rates (b) Redundancies (c) Classification error

rates and recalls

Figure 1.19: Results obtained for a population structure with only honest and

M2-type nodes

spect to all saboteurs, regardless of their profile) and the results concerning only

the colluding saboteurs (i.e. saboteurs belonging to M2 and M3 types).

First, we applied our method in pure populations with only M1 or M2-type

workers (Figures 1.18 and 1.19). We plotted the actual ST protocol error rates

(with dotted lines) against the ones obtained with simple replication (with solid

lines). We can note in Figure 1.18a that with only M1-type naive workers, our

sabotage tolerance protocol works pretty well, increasing the effectiveness of the

replication by at least 10 times and avoiding the verification of each conflicting

voting pool (Figure 1.18b). With only M2-type workers (Figure 1.19a), the sabo-

tage tolerance protocol works in its full power if the workers are sabotaging with

rates greater than 0.3, i.e., s2 ≥ 0.3. For smaller values of s2, like 0.05, results of

our algorithm are not so good, but even in this case, when simple replication is

effective, our protocol succeeds to improve error rate by about 10 times. We can

note that defeating all colluding saboteurs (the cases with big sabotage rates)

111

1.4 Sabotage Tolerance in Volunteer Computing

is done with the cost of a bigger redundancy (Figure 1.19b), as for every con-

flicting voting pool we ask two new results. This is the reason why in this case

the redundancy is higher than the theoretical redundancy. But, we should note

that redundancy is still lower than 4 and the percentage of the saboteurs in the

population is very high.

Regarding the classification tasks for the M1-type pure populations (figure

1.18c), our protocol correctly retrieves almost all naive saboteurs with an accept-

able low recall, if they sabotage consistently (i.e. s1 > 0.3). Also, the recall is low

if there are a considerable number of saboteurs. The worse results are obtained

for the cases with f1 = 0.05 or s1 = 0.05, i.e. there are very few saboteurs or they

do not reveal out their profile. In this case, classification rates are bigger (for

example in the case f1 = 0.05 or s1 = 0.3) because the classification procedure is

a statistical one and records some errors by classifying honest workers as M1-type

malicious ones. But, this situation does not affect globally our ST protocol be-

cause it introduces only very few additional auditing and redundancy. We can see

in figure 1.18a that also in this case, a 10-times gain in ST protocol error rate is

obtained. We should note that this population setup evaluates the performance

of the initial classification procedure described in section 1.4.3.3, which spots out

(with a good certainty) the naive saboteurs.

Regarding the classification tasks for the M2-type pure populations (figure

1.19c), we should note that our algorithm recalls almost all saboteurs if they are in

an acceptable proportion (f2 > 0.05) and they reveal their identity (s2 > 0.3). The

bigger global classification error rates for the cases when f2 = 0.05 are associated

with low recall. This means that step 6 of the algorithm 2 spots out very few naive

saboteurs, letting (as expected) the forthcoming replication on suspect voting

pools to spot out colluding workers with the price of the increased redundancy.

We should also note that the classification error rate for colluding saboteurs is

always 0 (figure 1.19c), because in M2-type pure populations there are no other

saboteurs to be classified as colluding malicious.

Next, we considered mixed population structures with naive and colluding

workers against honest ones (figures 1.20, 1.21 and 1.22). Specifically, we consid-

ered that the naive workers are in a small, medium or large proportions (f1 = 0.05,

f1 = 0.2 and f1 = 0.4) and we varied the structure parameters regarding the col-

luding workers.

112

1.4 Sabotage Tolerance in Volunteer Computing

(a) Error rates (b) Redundancies (c) Classification error

rates and recalls

Figure 1.20: Results obtained for a population structure with honest, M1 and

M2-type nodes, M1-type workers being in a small (f1 = 0.05) proportion

(a) Error rates (b) Redundancies (c) Classification error

rates and recalls

Figure 1.21: Results obtained for a population structure with honest, M1 and

M2-type nodes, M1-type workers being in a medium (f1 = 0.2) proportion

We can notice (figures 1.20a and 1.21a) that if the naive workers do not

overwhelm the colluding ones (the cases when f1 = 0.05 and f1 = 0.2), then the

ST protocol is very effective in spotting out the collusion, especially on the cases

when the colluding workers are well defined (the sabotage rate is big enough). For

the case when f1 = 0.4 (figure 1.22a), colluding workers have only a very small

influence on the overall and we got a situation similar with a pure M1 population.

Still, we get 10 times improvement in the error rate.

In this mixed case, the redundancy (figures 1.20b, 1.21b and 1.22b) is in

between the pure population cases. In majority of cases, the redundancy is small,

113

1.4 Sabotage Tolerance in Volunteer Computing

(a) Error rates (b) Redundancies (c) Classification error

rates and recalls

Figure 1.22: Results obtained for a population structure with honest, M1 and

M2-type nodes, M1 -type workers being in a large (f1 = 0.4) proportion

(a) Error rates (b) Redundancies (c) Classification error

rates and recalls

Figure 1.23: Results obtained for a population structure with M3-type nodes and

various naive rates, M3-type workers being in a small (f3 = 0.05) proportion

being very significantly below the theoretical one. We can notice that for the case

when colluding workers are in a large proportion (f2 = 0.4 - figure 1.20b), if the

naive workers shows their profile by a big sabotage rate (s = 0.5), the redundancy

is lower than the case of only pure M2-type workers, as the naive saboteurs are

spotted out by the procedure described in section 1.4.3.3.

In what regards the classification, the ST protocol correctly identifies most of

the colluding saboteurs. We should note that big classification error rates for the

colluding saboteurs are reported for the cases when naive saboteurs overwhelm

the colluding ones (f1 > f2). But, this is achieved concurrently with a very low

114

1.4 Sabotage Tolerance in Volunteer Computing

(a) Error rates (b) Redundancies (c) Classification error

rates and recalls

Figure 1.24: Results obtained for a population structure with M3-type nodes and

various naive rates, M3-type workers being in an average (f3 = 0.2) proportion

(a) Error rates (b) Redundancies (c) Classification error

rates and recalls

Figure 1.25: Results obtained for a population structure with M3-type nodes and

various naive rates, M3-type workers being in a large (f3 = 0.4) proportion

global classification error (see figures 1.21c and 1.22c). This means that our

ST protocol also identifies naive saboteurs that happened to vote together and

classified them as colluding.

As we discussed previously, a M3-type worker is a hybrid one. We again

considered various proportions of M3-type saboteurs (f3 = 0.05, f3 = 0.2 and

f3 = 0.4) and naive rates (c = 0.1, c = 0.5 and c = 0.9) over a full combination

of sabotage rates s3,1 and s3,2 (figures 1.23, 1.24 and 1.25).

The ST protocol results for populations consisting on M3-type workers ((fig-

ures 1.23a, 1.24a and 1.25a)) do not differ too much from the one presented up

115

1.4 Sabotage Tolerance in Volunteer Computing

to now, being similar with the case of mixed M1 and M2 populations. The re-

dundancies show up a similar pattern as explained before. Again, our protocol is

much effective when the M3 saboteurs behave mostly as colluding ones (c < 0.5)

and have a well defined colluding profile (s3,2 ≥ 0.3). But, also, in the rest

of cases, we obtain at least a 10 times improvement comparing with the basic

replication. The results of the classification procedures are also very good, the

algorithm identifying almost all colluding saboteurs.

Mixing M3-type workers with pure M1 and M2 ones does not change the above

results.

1.4.4.2 Discussion

In the Section 1.4.4.1 we have drawn out the following conclusions:

• we succeed to keep the error rate in the acceptable limit of 10−4 for the

most majority of cases

• if the malicious workers reveal their colluding profile with high consistency

(some sabotage rate s2 ≥ 0.3), our sabotage tolerance heuristic spots them

successfully, even if the number of saboteurs is large

• in all cases, we get at least 10 times improvement comparing with the simple

replication, without a meaningful increase of the redundancy. Even in the

worst case (with a large number of very effective colluding saboteurs), the

redundancy remains below an entire additional replication per work unit.

• the classification procedure is effective, spotting out most of the colluding

workers with a low classification error rate.

From the experiments it appears that the most difficult situation for our

sabotage tolerance approach occurs when there are many colluding saboteurs

(e.g. f2 = 0.4) and when they sabotage very infrequently (s2 = 0.05). Here, our

protocol succeeds to lower the error rate, but it still remains around 10−3. If

possible, a solution might be to increase the number of voting pools per worker

(N). Nevertheless, the actual findings in DGs make us think that such a scenario

has a very low probability of occurring in practice. In fact, our selection of N

116

1.4 Sabotage Tolerance in Volunteer Computing

was balanced between the good results it yields in most cases and the need to

keep it within the realistic assumptions of a DG environment.

When presenting the sabotage models in subsection 1.4.2.2 we assumed that

the malicious nodes are not aware of our sabotage detection mechanism and they

act to conceal themselves from majority voting. Now, let suppose that some ‘very’

malicious M2-type nodes are aware of our ST protocol and they will sabotage only

when all nodes in the voting pools are also M2-type ones. If every M2-type node

in the population is exhibiting such a behavior, these nodes will score no votes

against and will be never discovered. This behavior happens to be at the limit of

the behavior presented in the paragraph before, with M2-type nodes sabotaging

very infrequently - as the probability the master assigns three M2-type nodes in

a voting pool is very low (0.064 if f2 = 0.4). A solution to tackle such saboteurs

is presented in subsection 1.4.5.

We also think that colluding M2-type nodes aware of our ST protocol and

waiting for showing themselves up to the auditing phases of the protocol (steps 8

and 9 from algorithm 2) might not undermine the power of our algorithm. Sup-

pose that M2-type nodes do not sabotage in the initial round of voting. Therefore,

conflicting voting pools will involve only M1-type nodes which will be spotted out

by the classification algorithm. In this case, the number of remaining suspect vot-

ing pools will be very low (almost zero) and steps 8 and 9 of the algorithm will

almost be avoided. This case is similar with the one that only M1-type nodes live

in the population, besides the honest ones. More, if M2-types nodes sabotaging

in the initial phase are co-existing together with M2-type nodes that sabotage

only in the auditing phases, as the ST protocol selects for auditing honest nodes,

it will be very unlikely that two or three such ST protocol-aware M2-types nodes

to be selected for auditing.

Another difficulty of the ST protocol occurs when the number of naive mali-

cious workers is large (f1 = 0.4). The effectiveness of our ST protocol is closely

related to the weakness of replication in these situations, as shown by Sarmenta

[2002]. In fact, although we succeed to get improvements, to increase performance

one might need to increase m.

Another issue with our heuristic concerns the fact that we do not eliminate

completely all erroneous results. This results from a number of facts. First, we

select “honest” workers to verify the suspicious results. Although we have a very

117

1.4 Sabotage Tolerance in Volunteer Computing

good confidence that our selected workers are honest, we can not eliminate the

possibility of selecting malicious workers instead. This situation can happen with

higher probability if the number of saboteurs is very big. Second, the classification

algorithm of Section 1.4.3.3 is tuned for a compromise between error classification

(false positives) and recall (total number of real positives identified). If we want a

very small classification error rate for this algorithm, the recall may be lower and

conversely, for a large recall we should accept a larger classification error rate.

The larger the classification recalls are, the lower will be the redundancy of the

ST protocol and the number of errors in our ST protocol. On the other hand the

lower the classification error is, the lower gets the ST protocol error rate. In any

cases, 100% recall is not achievable by any possible classification scheme.

Regarding the computational effort, the matrix multiplication algorithm is

the most costly part. Kamvar et al. [2003] give a computational analysis for this

cost. To compute the initial probability estimates pv ,i , our algorithm scans once

the total voting pool results. To compute the joint distribution functions Fv ,

the algorithm performs for each worker at most N 2 multiplication and addition

operations. To compute the matrix C , the algorithm performs a summation for

each pairs of workers (quadratic complexity).

Thus, although the computation is somewhat heavy, the master has to perform

only scalar operations with quadratic complexity and this can be run off-line.

Although our algorithm is an off-line one, we do not state that the master

has to wait until the whole pool of client requests have been processed. The

master simply has to set a proper value for N (like 30 in our experiments) and

run the enhanced ST protocol once an average number of N results have been

collected per worker. As we mentioned previously, bigger this number is, better

performances are obtained. Practically, DG projects with average-to-short task

length which usually employ m = 2 replication can afford values of N from 20 to

30, which is enough for providing a good protection against collusion. Such values

of N are equivalent to running the enhanced ST protocol at every 1-2 weeks, for

projects like the ones supported in Einstein@Home or World Community Grid.

1.4.4.3 Classification alternatives

At the heart of the heuristic presented in section 1.4.3 resides the initial classifi-

cation procedure that identifies with a good reliability the naive M1-type workers.

118

1.4 Sabotage Tolerance in Volunteer Computing

We agreed upon the presented statistical approach after we tested several alter-

natives, offered by the machine learning field, presented in this section. First, we

should note that we have an unsupervised learning task with the goal of iden-

tifying the naive saboteurs. As presented in section 1.4.3.2, nodes belonging to

different types are characterized by different number of votes against collected

during their life in the system. Thus, the number of votes against represents the

essential information to profile a node.

Literature suggests to apply clustering algorithms like ROCK [Guha et al.,

1999], applied to cluster the US Congressmen after their voting behavior during

some period of time. If we consider each node represented as a categorical vec-

tor of votes per voting pools, our volunteer computing setup differs from the US

Congress setup because a node votes only on very few work units from the total

number of work units generated in the system. In the US Congress each congress-

man votes in the majority of open issues. Thus, the distance measure defined by

Guha et al. [1999] is not applicable in our case and we got very unstable results

with this approach.

For clustering, machine learning suggests k-means [MacQueen, 1967] as a sim-

ple heuristic to unsupervised cluster individuals. We tested various representation

of our nodes. First, we employed the P × P matrix of votes against, where P is

the number of workers, each node having allocated a row in this matrix. Because

this matrix is very sparse, the euclidean distance used by k-means does not have

a strong-defined meaning. Thus, k-means succeeds to separate the naive work-

ers only when they sabotage strongly, i.e. s1 > 0.5, which is not acceptable for a

desktop grid environment. If each node is represented by its distribution function

Fvi , we got somehow better results. But, in both cases, k-means does not guaran-

tee the convergence. For cases with naive workers showing up very infrequently

(s1 < 0.1), the classification performance of k-means is very poor. We got the

best of k-means for our problem if we represented each worker by the normalized

values of the total number of votes against and the total number of voting pools

where the node get defeated. In this case, k-means succeeds to extract out a good

number of naive workers (high recall), but on the cost of big number of false pos-

itives (high error rate). Figure 1.26 shows the classification results, with k-means

compared with our statistical approach for several population structures.

Retrieving a high number of false positive naive workers strongly influence the

119

1.4 Sabotage Tolerance in Volunteer Computing

Figure 1.26: Classification error rates for k-means clustering procedure against

the statistical approach for various population structures

performance of the auditing procedure of algorithm 2. Thus, there is a higher

possibility to select a malicious node to audit a suspect voting pool and less voting

pools will be considered suspicious, as the number of nodes classified as honest is

lower. Figure 1.27 shows global comparative results, plotting together the error

rate of the ST protocol when performing the classification with k-means and with

our statistical approach.

Figure 1.27: Error rates of the ST protocol when using k-means clustering pro-

cedure against the statistical approach for various population structures

120

1.4 Sabotage Tolerance in Volunteer Computing

1.4.5 The Maximum Independent Set Approach

In this section, we shortly brief the Maximum Independent Set approach, devel-

oped by Araujo et al. [2011] at University of Coimbra Portugal to overcome the

modeling drawback of the M2 colluding nodes, which were assumed as not being

aware that some collusion resistant sabotage tolerance protocol is employed by

the master.

This work introduced another type of malicious worker, the M4-type, which

can betray its partnering colluders to cover its course of action. After finding

peer colluders and deciding for the sabotage, an M4 node may retreat and vote

correctly. This is useful to overcome a collusion detection mechanisms. Hence, we

can say that M4 nodes take the resistance against collusion detection algorithms

a step further than M2 nodes, because they disguise their behavior even further,

by voting against each other.

Sabotaging behaviors defined up to now (from M1 to M4) set their decision to

sabotage based on the current voting pool alone, i.e., independently of what they

did in past voting pools. Unlike this, new malicious M5-type workers only decide

to sabotage when they are sure to be undetectable by an Maximum Independent

Set (MIS) algorithm, as defined below. A M5 node takes the decision to sabotage

as following. If three M5 nodes meet in the same voting pool, they will always

sabotage. A single M5 node never sabotages. The difficult decision occurs when

only two M5 nodes meet in the same voting pool. To tackle this case, each M5

node keeps a set of peers that voted in coalition against correct nodes. Consider

this to be S1 and S2, respectively for nodes N1 and N2. In the beginning S1 = {N1}
and S2 = {N2}. After N1 and N2 vote against a correct node, we define a new

peer set S1 ∪ S2, which becomes the peer set for all nodes in S1 ∪ S2 (including

N1 and N2). If S1 ∩ S2 6= ∅, N1 and N2 cannot sabotage together in the same

voting pool. The previous scheme ensures that M5 nodes will always belong to an

MIS (given that all the other nodes are correct). Briefly, the idea of the proof is

that the votes against graph is a tree (possibly a forest). Whatever root we pick

for (each one of) the tree(s), all leafs are M5 nodes. Also, correct and M5 nodes

do not have edges to their own type of nodes. Therefore, M5 nodes outnumber

correct nodes in this graph, thus forming an MIS.

To proceed with the MIS analysis, workers are arranged in the votes against

121

1.4 Sabotage Tolerance in Volunteer Computing

graph, as in figure 1.28. In this figure, node B voted against A and C, node C

against D and B and so on. In a graph, a MIS is the maximal independent set

with largest cardinality. Informally, this is the largest set of vertices from a graph

such that no edge connects two of those vertices.

Figure 1.28: The votes against graph

The votes against graph helps to detect the colluders, considering true the

statement that the largest plurality of nodes do not vote against each other. In

[Araujo et al., 2011], authors proved that MIS can exclude at most b nodes,

where b is the real number of malicious nodes. Further, the probability that

MIS includes the set B of malicious nodes after having x votes against unknown

correct nodes decreases with O((b
h
)

x
), where h in the number of honest nodes.

Therefore, computing MIS can identify the colluders, but this is a NP-complete

problem, as acknowledged by the graph theory [Garey and Johnson, 1979].

Araujo et al. [2011] implemented two searching heuristics in an attempt to

identify the MIS: the Higher-Order Ratio Heuristic Algorithm [Chang et al., 1988]

and the Greedy Randomized Adaptive Search Procedure [Resende et al., 1998].

Compared with KMeans and other variations of searching algorithms based on

122

1.4 Sabotage Tolerance in Volunteer Computing

votes against, the MIS approaches produce very good results in detecting the

colluding nodes group, regardless whether they fit in any of the M2 to M5 behavior

types. Besides the Sybil attack, already tackled with collusion aware algorithms

devised in Silaghi et al. [2009], the MIS approach is able to deter the whitewashing

attack, with (anonymous) nodes that leave the community to come back with a

new identity. We further computed the gain of the colluders of types M4 and M5,

showing that they achieve very low gains in the range of 5% − 20%; thus those

colluders being actual contributors, as most of their results are valid. In this

case, sabotaging colluders would find their effort worthwhile only if they manage

to sabotage few crucial results.

1.4.6 Conclusion

In this section we presented our results solving the problem of collusion between

saboteurs in desktop grids. The sabotage problem exists when the system is de-

ployed in Internet, with anonymous contributors. Typically, research community

[Domingues et al., 2007] approached the sabotage problem by considering that

workers are isolated and independent each of another. But, this assumption is

not any more valid when P2P concepts are employed for architectural design

of the desktop grid system. Within these new conditions, we formally defined

several collusion behaviors, fitting here new attacks like the Sybil attack and

whitewashers.

To tackle collusion, we designed a statistical toolkit able to classify the honest

workers out of the total pool. The classification scheme is based on computing the

observed statistical distribution of votes against received by the workers, when

participating in the voting pools of the replicated tasks. Identifying the hones

workers allow the master to spot out suspect voting pools and apply further

auditing on them. Our sabotage tolerance protocol was extensively validated by

simulation with all various configurations of the population structure. We show

that we effectively tackle the Sybil attack, while still preserving the practical

assumptions of a volunteer computing desktop grid. Further, we contributed to

the definition of a new sabotage tolerance protocol based on the votes against,

which computes the Maximum Independent Set out of the graph of the workers.

The MIS approach allows a new clustering of the workers, being able to spot

123

1.4 Sabotage Tolerance in Volunteer Computing

out the whitewashers. These last sophisticated workers are very effective against

reputation-based approaches, because they are able to quit the participation in

the system after sabotage and return back under a new identity.

Approaches considered in this section are worthwhile for tackling sabotage in

open P2P systems in general. We work on proving that collusion exists in social

networks and to apply there our approaches.

124

1.5 SLA Negotiation in Competitive Computational Grids

1.5 SLA Negotiation in Competitive Computa-

tional Grids

Automated and intelligent negotiation solutions for reaching service level agree-

ments (SLA) represent a hot research topic in computational grids. Previous

work regarding SLA negotiation in grids focuses on devising bargaining mod-

els where service providers and consumers can meet and exchange SLA offers

and counteroffers. Recent developments in agent research introduce strategies

based on opponent learning for contract negotiation. In this section, we design

a generic framework for strategical negotiation of service level values under time

constraints and exemplify the usage of our framework by extending the Bayesian

learning agent [Hindriks and Tykhonov, 2008] to cope with the limited duration

of a negotiation session. We prove that opponent learning strategies are worth

for consideration in open competitive computational grids, leading towards an

optimal allocation of resources and fair satisfaction of participants.

Contribution of this section was initially presented as [Silaghi et al., 2010] and

further elaborated in [Silaghi et al., 2011].

1.5.1 Research objective

The Service Level Agreement (SLA) concept represents the key element towards

a business ready infrastructure empowering the service economy in a flexible and

dependable way [SLA@SOI Consortium, 2008]. A Service Level Agreement is

a contractual obligation between a provider and a consumer defining the mu-

tually agreed understandings and expectations - namely the Quality of Service

(QoS) values, about the provision of a service [Andrieux et al., 2007; Yan et al.,

2007]. In computational grids, SLAs are used to establish service-delivery frame-

works between providers and consumers, controlling the usage and the provision

of resources [Pichot et al., 2009]. Providing efficient resource allocation in a com-

putational grid is regarded as a complex undertaking due to its scale and the

fact that resource owners and consumers may have different goals, policies and

preferences [Sim, 2010]. When designing the resource management solution, one

critical issue is to provide proper mechanisms that induce the involved parties

to agree on the QoS values for the established SLAs. Usually this is done in a

125

1.5 SLA Negotiation in Competitive Computational Grids

negotiation phase which is automated in the infrastructure middleware that takes

care of the SLA management.

In computational grids, a fundamental characteristic is the automation of the

SLA negotiation process, in the sense that stakeholders rely on the existing mid-

dleware to deploy resources in the grid and to consume them. For instance, in

grids standardization efforts were undertaken to provide the formal definition of

a message protocol - named WS-Agreement Negotiation [Andrieux et al., 2007;

Clark et al., 2009; Waeldrich et al., 2011] towards fully specifying the SLA be-

tween two parties. In WS-Agreement Negotiation, SLA negotiation is regarded

as an exchange of bids between the provider and the consumer up to the final

agreement. When applied to open Peer-to-Peer (P2P) service systems, SLA nego-

tiation can become a tool to increase the dependability. Peer-to-Peer systems are

vulnerable to various attacks, peers trying to exploit the internal mechanisms for

their benefit (e.g. by free riding). All major P2P systems like Gnutella [Adar and

Huberman, 2000] or BitTorrent [Cohen, 2003] base their functioning on some eco-

nomics principles for service exchange, providing the participants with incentive

schemes, and trying to avoid the self-interested malicious players undermining

the global system stability.

Therefore, if we approach heterogeneous computational grids with open par-

ticipation, where everyone is welcome to join, provide and consume services,

SLA negotiation should be properly devised and carried out to insure several

desirable properties like optimal allocation of resources, fair satisfaction of par-

ticipants, system stability and a high degree of dependability. SLA negotiation

might be modeled as a non-cooperative sequential bargaining game [Ausubel and

Deneckere, 1993] with self-interested players adopting various strategies. Typ-

ically, according with their profile, participants will select one of the available

negotiation strategies and contribute to the grid by entering automated negoti-

ation sessions for service delivery and consumption. However, designers should

equip the computational grid with robust SLA negotiation strategies that lead

to outcomes that fulfill as much as possible the principles enumerated above.

The open research question is which are those negotiation strategies that should

be deployed in such a system. With proper designed negotiation strategies, the

system might deliver outcomes as if a loose collaboration were induced between

self-interested competing participants.

126

1.5 SLA Negotiation in Competitive Computational Grids

In this contribution we tackle the subject of automating SLA negotiation in

computational grids, with competing participants and under time constraints.

Previous work regarding SLA negotiation in grids [Cheng et al., 2010; Figueroa

et al., 2008; Lang, 2005; Lawley et al., 2003; Li and Li, 2004; Li et al., 2007;

Li and Yahyapour, 2006; Pichot et al., 2009; Siddiqui et al., 2006; Yan et al.,

2007; Zulkernine et al., 2009] focuses on devising SLA negotiation frameworks

using bargaining models with agents employing various concession-based strate-

gies. However, negotiation time is not explicitly considered as a resource and

opponent modeling is absent. Here, we build a class of intelligent strategies for

contract negotiation based on opponent modeling, recently developed in agent

research [Hindriks and Tykhonov, 2008], and present a framework for strategical

negotiating QoS values under time constraints.

The contribution of this work is two folded. First, our time-constrained frame-

work is characterized by generality, in the sense that it can be adapted to any

standard intelligent negotiation strategy that learns the opponent’s profile. Time-

constrained negotiation is of key importance in a SLA-aware middleware, because,

negotiation time is finite and participants can not endlessly wait for obtaining

the SLA. Second, we discuss and argue the usage of opponent’s profile learning

strategies for SLA negotiation. By experimentation, we show that equipping a

SLA-based open system with our devised negotiation strategy, we can achieve

optimal allocation of resources and fair satisfaction of participants.

Subsection 1.5.2 formally describes the SLA negotiation problem. We start

by formalizing the SLA negotiation game. Next, we present the state-of-the-

art regarding intelligent negotiation strategies and shortly describe the Bayesian

learning agent, further used as a baseline example to develop a time-constrained

strategy. Subsection 1.5.3 presents the general framework for building time-

constrained negotiation strategies. Subsection 1.5.4 presents the experimental

results of a particular time-constrained negotiation strategy based on opponent

learning against several other strategies considered by the literature and subsec-

tion 1.5.5 concludes the section.

127

1.5 SLA Negotiation in Competitive Computational Grids

1.5.2 Background and related work

In this section we formalize the SLA negotiation setup and introduce the ex-

isting work on negotiation strategies, which constitutes the foundation of our

contribution. Moreover, we argue for the need of SLA negotiation strategies

in open computational grids, emphasizing that, from economics point of view,

an opponent learning negotiation strategy has several beneficial properties for a

SLA-based open grid.

1.5.2.1 SLA negotiation formalization

In this subsection we formalize the SLA negotiation setup. We tackle a virtual en-

vironment with service providers and users (consumers). Let X = {x1, x2, . . . , xn}
denote the set of all services, with x ranging on X . Let SP denote the set of ser-

vice providers, with sp ranging on SP , and function S : SP → P(X) denoting

the services provided by a service provider, where P represents the power set

operator. Let SC denote the set of users (service consumers) of the system, with

sc ranging on SC .

Each service has associated issues of interest, denoted by set I , which users are

interested in negotiating; variable i ranges on I . Function IS represents the set of

issues of interest for a service: IS : X →P(I). Given a SLA-based environment,

for a given service, users are interested in negotiating issues like the price, penalty

and the properties of the service. Our framework covers both functional and non-

functional attributes of a service, given that for each attribute, either it can be

defined a finite list of possible options or the service level values are expressed as

real numbers.

Negotiation finishes with a contract (the SLA) that is composed of the actual

price paid for the service, the penalty and the actual service level values. Function

O sc : X ×SP×I → R denotes the expectation of user sc on the services she uses,

where R denotes the real numbers. Notation v sp,sc
x ,i represent the expectation of

user sc on issue i of service x supplied by provider sp, which in fact, are the QoS

values.

In this contribution we focus on the bilateral SLA negotiation, between a

service provider sp and an user sc for a given service x . We assume that agents

are in place to automate this negotiation, and for each negotiation session we

128

1.5 SLA Negotiation in Competitive Computational Grids

restrict the available time to Tmax .

We denote by U (v) = U sp,sc
x (v) the utility that user sc gets by obtaining

the actual value v = (v sp,sc
x ,i1

, v sp,sc
x ,i2

, . . . , v sp,sc
x ,in

) of the consumed service. Similarly,

W (v) = W sp,sc
x (v) represents the utility that user sp gets by delivering the actual

value v . From now on, as we deal only with a given service, supplied by a given

provider and consumed by a specified user, we will drop the letters sp, sc and x .

We assume that the utility functions U (v) can be written by a linear combina-

tion of the individual utility functions Uk(vk) (á la Von Neumann [von Neumann

and Morgenstern, 1944]):

U (v) =
n∑

k=1

ωsc
k Uk(vk), with

n∑
k=1

ωsc
k = 1. (1.7)

where Uk(vk) represents the utility that the consumer obtains by receiving the

value vk = v sp,sc
x ,ik

for the issue ik and 0 ≤ ωsc
k ≤ 1 represent the weights measuring

the importance of a given issue k for the user sc. Similarly, utility function W (v)

can be written as a linear combination of individual utility functions Wk(vk) with

weights ωsp
k , 0 ≤ ωsp

k ≤ 1.

The negotiation can be formalized using game theoretical foundation. A non-

cooperative bilateral game is defined by a set of possible strategies for each player

(sets S1, S2) and the utilities u1(s), u2(s) for both players, for each possible combi-

nation of strategies s = (s1, s2) ∈ S1×S2. The SLA negotiation game can be seen

as a sequential offer/counteroffer bargaining game. Such a negotiation is a finite

extensive form game in which, at discrete moments in time, one (and only one)

of the players is given the opportunity to make an offer which the other player

can either accept or reject [Ausubel and Deneckere, 1993]. A strategy of a player

in a bargaining game describes what the player should do at each step, for any

possible history of the game till that time. In our case, a SLA (which is the vector

v = (vi1 , vi2 , . . . , vin)) can be seen as a possible one round strategy (i.e. bid) for

each of the players, while the value that each player gives to it (U (v) and W (v)

respectively) is private information. The final agreed SLA is the outcome of the

bargaining game. Given the time constraints, the agreed SLA should be obtained

before Tmax elapses, implying that the bargaining game is finite horizon.

When a provider (seller) negotiates with a consumer (buyer), both parties are

interested in obtaining those contract values v = (vi1 , vi2 , . . . , vin) (i.e. the final

129

1.5 SLA Negotiation in Competitive Computational Grids

agreed SLA) that maximize their utility functions U (v) and W (v) respectively.

This means that at each moment during the negotiation, the player to formulate

a bid is maximizing her expected utility function over the remaining bargaining

game.

A designer should endow the automated SLA negotiation system with strate-

gies which insure that the bargaining outcome is fulfilling several desirable prop-

erties. In what follows, we formalize the desirable properties of optimal allocation

of resources and fair satisfaction of participants.

An outcome of a game is Pareto efficient if there is no other outcome under

which both players are better off, with at least one strictly better off. In our

case, a SLA agreement is Pareto efficient if one player cannot strictly increase

its utility without diminishing the utility of the opponent. All Pareto efficient

outcomes define the Pareto curve (frontier) of the game. Thus, the first goal of a

strategy designer in a negotiation game would be to obtain SLA agreements on

the Pareto frontier, which is a minimal economic requirement.

A Kalai-Smorodinsky outcome represents the Pareto efficient result for which

the utilities of both players are proportional with their maximum possible gains.

Thus, given that a total utility u1 + u2 is produced out of a game, the Kalai-

Smorodinsky solution enforces an equalitarian (fair) distribution of this utility

between the two players. Note that Kalai-Smorodinsky solution is a feature of

cooperative environments as well.

We emphasize that, given a game where a provider sp negotiates with a con-

sumer sc on a set of issues IS (x) of service x , U (v) and W (v) are private infor-

mation, being established before the negotiation starts. During the negotiation

game, both U (v) and W (v) keep constant constant their functional form, while

exchanged bids are not influencing the valuation the users give for the service.

From the point of view of a designer of an open computational grid, it is de-

sirable that agents (consumers and providers) are equipped with the same intel-

ligence and, in a negotiation, they should reach a Kalai-Smorodinsky agreement,

even if the environment is in fact non-cooperative. If not possible to reach a Kalai-

Smorodinsky agreement, bargaining Nash outcome 1 is also acceptable since it

1A Nash solution to a non-cooperative game represents a strategy profile (s1, s2) where, for

both players, the following assertion is valid: one player cannot improve on its utility under the

Nash solution, given that the opponent does not change its Nash solution strategy. Among all

130

1.5 SLA Negotiation in Competitive Computational Grids

maximizes the total welfare of the players. Such an automated environment will

have the following desirable properties:

• produces a maximum welfare and

• provides a fair distribution of the welfare between the negotiating agents.

Thus, outside agents have economic incentives to participate and stay longer

in the open environment, assuring the long-life and stability of the system by

exclusively internal and self-regulated means.

1.5.2.2 SLA negotiation in computational grids

In this subsection we present the existing technological background for SLA ne-

gotiation in computational grids and how grid computing and agent research deal

with strategical negotiation.

Grid computing research focuses mostly on devising software middleware to

efficiently support and integrate widely distributed heterogeneous resources. The

WS-Agreement specification [Andrieux et al., 2007], using parts of the Web Ser-

vices Resource Framework (WSRF), describes a Web Services protocol for estab-

lishing agreement between two parties such as a service provider and a consumer.

It introduces an extensible XML language for specifying the nature of the agree-

ment and agreement templates to facilitate discovery of compatible agreement

parties. WS-Agreement Negotiation 1.0 [Waeldrich et al., 2011] extends the WS-

Agreement with support for bilateral negotiation of agreement offers and rene-

gotiation of existing agreements, by providing a symmetric message exchange

protocol and a simple negotiation state machine. Definition of concrete nego-

tiation strategies is out of the scope for WS-Agreement Negotiation. But, as

defined by Clark et al. [2009]; Waeldrich et al. [2011], the protocol clearly estab-

lishes the rules of the negotiation game as a bilateral (competing) negotiation

with successive rounds of offers and counteroffers, fitting exactly the theoretical

Nash solutions to a non-cooperative game, we can identify the Nash bargaining solution which

maximizes the product of the players’ utilities u1(s1, s2) × u2(s1, s2). Such an outcome can be

sustained if both players cooperate during the negotiation, which is a feature of the cooperative

environments. However, the challenge is to guide self-interested competing participants towards

such an outcome.

131

1.5 SLA Negotiation in Competitive Computational Grids

formalization presented in the previous subsection. Up-to-date, important grid

middleware like Globus and UNICORE implemented WSRF, thus, offering the

technological ground for SLA negotiation and establishment in a grid service-

oriented architecture.

In P2P systems and open grids, several technological models for SLA negoti-

ation exist. Rubach and Sobolewski [2009] propose a SLA-based SERVICEable

Metacomputing Environment (SERVME) capable of matching providers based

on QoS requirements and performing autonomic provision and deprovision of ser-

vices. In a P2P grid, organized as a service marketplace where every peer can

request a service and providers are heterogeneous, Di Stefano et al. [2009] present

a distributed strategy to discover and acquire a demanded QoS. SLA negotiation

is part of the QoS distributed discovery protocol and ensures that some SLA

agreement is reached out of a chain of offers and counteroffers messages. The

specific negotiation behaviors of peers during the SLA negotiation phase is left

out of their scope. At a broader level, Brandic et al. [2010] investigate the func-

tioning of a self-manageable cloud, where participants do not have matching SLA

templates and a-priori knowledge about negotiation terms and protocols. They

describe the VieSLAF framework to facilitate service mediation and negotiation

bootstrapping in such clouds. Cheng et al. [2010] present a framework for re-

source federation in grids, given that nodes are equipped with policies and they

possess criteria to accept or not an agreement.

All the above-mentioned research literature proves that technological back-

ground for SLA negotiation exists in Grids, P2P and Clouds. While the interac-

tion protocols and message formats are well established and specified, the specific

behavior of the participants is left out of the scope in the majority of technical

approaches. This paper will focus on analyzing the specific behavior of service

consumers and providers and will propose a negotiation strategy with several ben-

eficial properties, adhering to the latest developments in grid research, presented

in the paragraphs below.

Recent grid computing research considers strategic negotiation models for au-

tomated SLA negotiation. In the simple bilateral negotiation setup, learning

strategies were investigated and tested. Li and Yahyapour [2006] consider Q-

Learning [Watkins and Dayan, 1992] applied directly for SLA negotiation with

time-decreasing utility functions. With Q-Learning, they try to predict the oppo-

132

1.5 SLA Negotiation in Competitive Computational Grids

nent action, rather than the opponent profile, given that concession-based strate-

gies are adopted by both players. Figueroa et al. [2008] employ the game theo-

retical modeling to analyze and solve the particular case of the SLA negotiation

game having only two rounds. Zulkernine et al. [2009] propose a policy-based

SLA negotiation framework where parties can adopt strategies of type conceder

or boulware [Faratin et al., 1998], negotiation time being encoded in the utility

functions of the players. Lang [2005] investigates the well-being of the grid if

nodes are equipped with dynamic negotiation strategies of the same type con-

ceder or boulware. They conclude that neutral strategies are better for the grid

as a whole. Our approach depart from those that consider standard agent types

like conceder and boulware. We do not encode the negotiation time in the utility

functions. We also let our strategy to be as competitive as possible, in order to

avoid the players behaviour to be learned. Even if malicious participants would

try exploiting the system rules, a regular system participant using our devised

strategy will obtain fair SLAs against them.

Besides this simple bilateral approaches, concurrent negotiation setups were

investigated, considering possible out-side options available for both parties [Li

et al., 2007]. Yan et al. [2007] present a framework for service composition provi-

sion, including autonomic SLA negotiation in a setup with multiple alternatives,

using concession-based and trade-off schemes, without opponent learning. Sid-

diqui et al. [2006] consider allocators as brokers mediating and performing nego-

tiation between an initial SLA request and clients with available capacity. Such

one-to-many negotiation setups are of larger perspective [Nguyen and Jennings,

2003], being out of the scope of this paper and representing a venue for further

research.

For full recent surveys tackling strategical resource negotiation in grids the

reader is directed to consult the works of Sim [2010] and Haque et al. [2011].

In general, models for SLA negotiation in grids are neither concerned on the

optimality of the solution or the strengths of the proposed negotiation strategy.

These models emphasize the automation and the gains that can be obtained in

comparison with a non-automated and zero intelligence solution.

Agent research is mostly focused on the formal aspects of the negotiation and

proposes more elaborated negotiation strategies. Negotiating agents were devel-

oped for the bilateral setup, including the following ones. The zero-intelligent

133

1.5 SLA Negotiation in Competitive Computational Grids

agent [Gode and Shyam, 1993] investigates the baseline behavior of a random

agent. Jonker and Treur [2001] presents an agent devised in-line with the Belief-

Desire-Intention (BDI) architecture of the mid-90’s agents. Based on this archi-

tecture, Jonker et al. [2007] further investigate whether information disclosure

during negotiation is valuable for the agents and shows that even with a lim-

ited amount of preference information revealed, agents can still obtain significant

joint gains in the outcome. Within the same BDI architecture, [Lopes et al.,

2004] present a generic framework to test tactics during a negotiation, such as:

starting high and conceding slowly, starting reasonable and conceding moderately,

respectively starting low and conceding rapidly. We consider that our framework

subscribes to the first mentioned negotiation tactic of [Lopes et al., 2004] (starting

high and conceding slowly). Raeesy et al. [2007] apply the fuzzy logic to model

the negotiation agents and to describe their strategic behavior. A Bayesian learn-

ing framework is introduced by Hindriks and Tykhonov [2008] to approximate the

user profiles. Negotiation with the help of Q-Learning is investigated by Dearden

et al. [1998]; Jian [2008]. Rather than learning the opponent’s profile, Faratin

et al. [2002] investigate the optimal strategy to perform trade-offs when propos-

ing new bids. Sim [2002] analyzed how various sorts of negotiation strategies

perform under time constraints, theoretically proving that agents adopting con-

servative strategies will achieve higher utilities when negotiation deadline is long,

but with higher risk of loosing the deal to other agents. Our devised strategy fits

the conservative strategy definition presented in [Sim, 2002] and also incorporates

opponent learning, which there it is seen as a possible improvement.

We insist on the difficulty to practically compare these negotiation solutions.

Each author of a negotiation strategy devised it within some specific setups and

no strategy was ever compared against the others with the same environmental

assumptions. To overcome these problems, the Genius negotiator1 [Hindriks et al.,

2009] was developed at the Delft University of Technology, supplying a unified

environment for negotiation strategies comparison. Genius allows the definition of

negotiation domains with continuous or discrete attributes and of roles (consumer

and provider) profiles including the weights ωsc
k (and ωsp

k respectively) for issues,

1http://mmi.tudelft.nl/negotiation/index.php/Genius (consulted on 10 august 2011). We

thank Prof. Catholijn Jonker from Delft University of Technology Netherlands that provided

us a comprehensive introduction to Genius

134

1.5 SLA Negotiation in Competitive Computational Grids

the individual utilities Uk(vk) (and Wk(vk) respectively) for discrete issues and

the proportional first-order utility functions for continuous issues. Continuous

issues are treated in Genius by discretization - and, further in our paper, we will

consider only discrete issues with the additive utility functions presented in eq.

1.7.

However, up to date, only some of the strategies presented above [Gode and

Shyam, 1993; Hindriks and Tykhonov, 2008; Jonker et al., 2007] are implemented

in Genius. To ease the comparison of our negotiation strategy with the existing

literature, we implemented it in Genius (see section 1.5.4).

In the papers originating from agent research, the focus is on learning the

opponent’s profile and preferences - time restriction is not a major concern, and,

given this, to devise negotiation strategies for mutual benefit of both parties. In

our paper we focus on devising a time-based strategy, that in conjunction with

an opponent learning procedure, brings further advantages and gains from the

negotiation process. Furthermore, the negotiation under time constraints makes

the strategy suitable for the practical requirements of a SLA-based computational

grid.

1.5.2.3 The Bayesian learning agent

An opponent learning agent, during the play of the game, tries to infer the utility

function of the other player. In general, at each negotiation step, such an agent

performs two actions:

• analyze the incoming opponent’s proposal and update the opponent’s pro-

file;

• select and propose the next bid.

Learning the opponent’s profile consists mainly of approximating the opponent’s

utility function 1 U (v). While we assume that the utility function U (v) is a linear

combination (see eq. 1.7), the opponent profile is composed of the individual

utility functions Uk(vk) and the weights ωk , for all issues k = 1, n. Bayesian

1During this subsection we adopt the notation U (v) referring to the utility function of the

opponent, regardless her role of being a buyer or a seller. The notation Uown(v) is used in

several places to denote the utility of the agent that is to move and decides what to do next.

135

1.5 SLA Negotiation in Competitive Computational Grids

learning [Hindriks and Tykhonov, 2008] associates a probability for each possible

hypothesis about the opponent profile; a hypothesis being a combination between

a vector of weights and the individual utility functions.

As the search space for the opponent profile is infinite, different learning mod-

els propose various techniques to reduce it and to make it computer tractable via

simplification. Bayesian learning does not precisely learn the weights ωk of the op-

ponent. While the literature [Faratin et al., 2002] argues that learning the ranks

of the weights is typically sufficient to significantly increase the efficiency of the

outcome, the search space for the weights reduces to the n! possible rankings of

the preferences for the n issues.

For each individual utility function Uk(vk), the agent preferences for the issue

values can be encoded starting from three basic function shapes:

• downhill shape: minimal issue values are preferred over other issue values

and the evaluation of issue values decreases linearly when the value of the

issue increases;

• uphill shape: maximal issue values are preferred over other issue values and

the evaluation of issue values increases linearly when the value of the issue

increases;

• triangular shape: a specific issue value somewhere in the issue range is

valued most and and evaluations associated with issues to the left and right

of this issue value linearly decrease.

A function with a unique extreme point on an interval can be approximated

with a linear combination of basis functions1 from the three types presented

above. Therefore, given that the domain of an issue k has mk values, one can

draw mk functions with the maximal issue value in each of the mk values and

linearly combine these functions to obtain the individual utility function Uk . This

approach is very suitable for discrete issue domains, while continuous domains

might be discretized (i.e. split in m equal subintervals). Thus, for an issue k , the

1In mathematics, a basis function is an element of a particular basis for a function space.

Every function in the function space can be represented as a linear combination of basis func-

tions, just as every vector in a vector space can be represented as a linear combination of basis

vectors (G. Strang, ”Wavelets”, American Scientist, Vol. 82, 1994, pp. 250-255.)

136

1.5 SLA Negotiation in Competitive Computational Grids

search for the individual utility function Uk is in fact reduced to learning some

numeric values 0 ≤ pi ≤ 1, i = 1,mk , which allows to compose Uk as a linear

combination of triangular functions.

From the discussion above, we note that learning the opponent profile means

selecting the proper ranking of weights and assigning some probabilistic values

for each triangular valuation function for each issue value, for all issues.

Therefore, in the Bayesian learning setup, a user (opponent) profile is a matrix

that associates probabilities for each hypothesis hj ∈ H , where H = Hω × H1 ×
H2 × . . .Hn is the hypotheses space. We note that the hypotheses space lists all

possible combinations between the possible preference orders for the issues of the

opponent and possible individual utility functions for each issue. One row of this

matrix represents the probabilities (pω, p1, . . . , pn) associated for a hypothesis h,

and the matrix has M = n! × m1 × m2 × · · · × mn lines (the total number of

possible hypotheses).

Bayesian learning starts with some random initialization of the agent profile

matrix. At each step, this matrix is updated using the Bayes rule. If bt is the

newest received bid, then

P(hj | bt) =
P(hj)P(bt | hj)∑M

k=1 P(hk)P(bt | hk)
(1.8)

Hindriks and Tykhonov [2008] shows how to compute eq. 1.8, given the setup

described above. It is noteworthy that if the opponent agent is a rational one,

after a big number of proposed bids, the agent profile matrix converges.

The second action that a negotiating agent performs in each step is to select

and propose the next bid. In general, a strategy defines some conditions that

prospective bids should fulfill in order to be included in the subset with acceptable

bids to be proposed.

For each possible own bid b = (v1, v2, . . . , vn) the agent can compute the

estimated utility of this bid for the opponent:

U (b) =
M∑

j=1

P(hj)
n∑

k=1

ωk Uk(vk) (1.9)

A smart strategy is to select and propose that bid that maximizes the utility

Ub of the opponent, while the own utility Uown to stay as close as possible to the

137

1.5 SLA Negotiation in Competitive Computational Grids

own target negotiation objective τ :

b = arg max
b′∈{x ||Uown (x)−τ |≤δ}

U (b ′) (1.10)

Agent research [Faratin et al., 2002; Hindriks and Tykhonov, 2008] considers

this strategy valuable because, at each step of the negotiation, it increases the

chance that the own bid to be accepted by the opponent, without deviating much

from the target utility. In our framework defined in subsection 1.5.3.1, we improve

exactly this condition, in order to create different concession levels.

Because the Bayesian learning agent should react in a reasonable time and

both actions to be performed at each step include high running complexity, code

and computation optimizations are required to make the agent responsive. Hin-

driks and Tykhonov [2008] propose some optimizations and show the power of the

Bayesian agent against other negotiating strategies, including trade-off [Faratin

et al., 2002] and ABMP [Jonker et al., 2007].

We note several drawbacks of the Bayesian agent:

• it does not learn the negotiation strategy of the opponent, as, at every step,

it updates the opponent profile only with the information about its last bid,

never considering the succession of the opponent’s bids;

• the agent is highly dependent on the initialization step. At the beginning

of the negotiation, the opponent profile is very weak and the agent will

propose highly suboptimal bids. Thus, if the negotiation finishes in the

first rounds, the Bayesian agent is highly likely to lose;

• as devised by Hindriks and Tykhonov [2008], the Bayesian agent is a conces-

sion agent, it linearly decreases the predicted utility value for the opponent

over the time. Thus, the agent has more chances to finalize the negotiation

in few rounds, which raises the drawback presented just above.

To overcome these drawbacks and to improve the agent as much as possible,

suited for a negotiation under time constraints, we propose the framework pre-

sented in section 1.5.3. One should note that this framework is general enough

to be used in relation with other opponent learning strategies.

138

1.5 SLA Negotiation in Competitive Computational Grids

1.5.2.4 Why opponent learning agents for SLA negotiation? - an

economic point of view

In this subsection we argue, from an economical point of view, for the need of

opponent learning agents to negotiate SLAs in open environments. By means

of experiments, we emphasize the feature that intelligent agents which learn the

opponent profiles bring in the beneficial properties we desired for the whole com-

putational grid environment (i.e. optimal allocation of resources and fairness).

Let’s experiment1 a negotiation between two basic non-intelligent agents on

the SON domain2 [Faratin et al., 2002]. Each agent, either consumer or provider,

only records the list of the opponent’s bids, without making any inference about

the opponent’s profile. When proposing the next bid, this non-intelligent agent

uses the same condition like in eq. 1.10, but with a narrow target search space,

restricted to the list of the opponent’s previous bids. In figure 1.29a, we notice

that such two agents do reach a sub-optimal agreement, the outcome not being

on the Pareto frontier.

In figure 1.29b we let two Bayesian agents (as described in the previous sec-

tion) negotiate on the same domain. We notice that the agreement moves up to on

the Pareto frontier and very close to the Kalai-Smorodinsky solution. Thus, the

agreement becomes Pareto-optimal and the solution is very close to the equalitar-

ian cooperative one. In the conclusion, equipping the agents with intelligence will

make the self-interested opponents to “cooperate”, which is a desired property

we induced in the system.

For the design purposes of an open computational grid, the property presented

in the previous paragraph is of main importance. If the software designer equips

the system with the same intelligent strategic behavior - like the Bayesian learning

strategy, for both the providers and the consumers, the usage of such strategies

will induce an optimal and fair resource allocation inside the system, given that

the QoS properties of the services and the utility functions of the participating

peers are a-priori established. We acknowledge that other strategies might exist

in order to achieve the optimal allocation and fairness, but, as acknowledged

by Sim [2002], the usage of opponent learning is a research alternative towards

1All negotiation sessions presented in this paper are implemented and run in the Genius

negotiator, previously introduced in section 1.5.2.2
2This domain will be further introduced in section 1.5.4

139

1.5 SLA Negotiation in Competitive Computational Grids

(a) Non-intelligent agents (b) Intelligent agents

Figure 1.29: Comparison between: (1.29a) a negotiation game between non-

intelligent agents, and (1.29b) a negotiation game with intelligent agents that learn

the opponent’s profiles

this. As we will see in subsection 1.5.4.2, even when the Bayesian learner plays

against other strategies on various sorts of negotiation domains, the results are

not penalizing the Bayesian.

1.5.3 The time-constrained negotiation strategy

In what follows we present our strategy for negotiation under time constraints.

First, in subsection 1.5.3.1 we present the general setup for constructing learning

agents, given that a time constraint is imposed for a negotiation session and we

show how we instantiated a Bayesian learning agent to accommodate this general

setup. We end this section by discussing about the performance estimation of

our negotiation strategy on various domains and presenting some mandatory code

optimizations.

1.5.3.1 The General Framework

We assume an automated bilateral negotiation, with exchange of bids between the

user agent (the consumer) and the service provider agent. A bid b is in fact a SLA

140

1.5 SLA Negotiation in Competitive Computational Grids

proposal, issued at time t . Negotiation should finish before time Tmax . If the user

and the provider are not able to establish an agreement before Tmax , they gain

nothing from the negotiation game. We restrict the scope of our framework for

a single negotiation game, and we do not consider several successive negotiation

sessions of the same player.

The agent designed in this section is a learning agent of the kind described in

subsection 1.5.2.3, performing two actions at each step: (i) updates the opponent’s

profile and (ii) select and propose the next bid. Our agent can play both roles,

either user (buyer / consumer), or service provider (seller). Although we design

our agent for the Bayesian learning setup, we do not restrict the agent design

to this specific learning scheme, nor do we restrict the agent for a particular

negotiation domain.

In game theory [Ausubel and Deneckere, 1993], in an offer/counteroffer bar-

gaining game, if the game ends at some moment t , the utilities of the players

are discounted by some factor such as e−rt . In our case, opposite from previous

work [Lang, 2005; Li and Yahyapour, 2006; Yan et al., 2007; Zulkernine et al.,

2009] in SLA negotiation in grid computing, there is no clearly specified discount

factor. However, the concession behavior may also be understood as the player

being conscious that, as time passes, the probability to reach the end of the game

without agreement and with zero utility increases.

The main idea of our negotiation strategy consists in adapting the agent be-

havior to the duration of the negotiation. Usually, a learning scheme takes time

to converge to some consistent opponent’s profile, therefore the agent should con-

sider to allow several bilateral bids exchange rounds without much own utility

concession and concede only when the total negotiation time Tmax is about to

elapse.

Our strategy is to divide the negotiation time [0,Tmax] in k subintervals

I1, I2, . . . , Ik , I1 = [0,t1], . . . , Ik = (tk−1,Tmax] and let the agent play different

strategies on each subinterval. During all negotiation time, the agent applies the

baseline learning scheme in order to estimate the opponent’s profile. The strate-

gies played on each subinterval I1, I2, . . . , Ik differ on the step when the agent

selects and proposes the next bid such as follows:

• Conditions C1 for selecting the next bid in subinterval I1 are the strongest,

the agent making very few concessions at the beginning of the negotiation;

141

1.5 SLA Negotiation in Competitive Computational Grids

• Conditions Ct−1 for selecting the next bid in the subinterval It−1 are stronger

than the conditions Ct for selecting the next bid in the subinterval It , for

every t = 2, k ;

• Conditions Ck for selecting the next bid in the last subinterval Ik are the

baseline conditions of the learning scheme.

It results that C1 ⊃ C2 ⊃ · · · ⊃ Ck .

In our case, we selected k = 3 and divided the interval [0,Tmax] into three

subintervals:

• interval I1: from [0,t1], the agent makes only very small concessions;

• interval I2: from (t1,t2], the agent performs like in I1, but we relax some

conditions for selecting the next bid;

• interval I3: from (t2,Tmax], the agent concedes like in the standard setup

imposed by the baseline learning agent. Our agent will concede down to a

reservation utility, although the agent should be better off with any gains

from the negotiation if the total negotiation time elapses without any agree-

ment.

When designing our agent we selected the interval limits t1 and t2 by experimen-

tation and devised the conditions for when and how to make concessions.

We introduced the second interval I2, because we noticed that (see figure 1.30a),

without this interval, the agent switches very abrupt from a powerful agent that

does not concede to an agent that concedes very quickly. If a smart agent is con-

sidered as the opponent, this agent can simply learn this behavior and our agent

will never win in this case. By performing the transition between the strong-

holding agent behavior of I1 to the standard behavior of I3 via some ”mixed”

behavior in I2, we harden the job of an opponent to learn our strategy.

The reader can also note that on I3, at the end of the negotiation, we do not

accept an agreement below our reservation utility ur . This can be: a) the utility

of the bid that maximizes the estimated opponent’s utility on the whole domain;

or b) the utility given by the first offer of the opponent; or c) another of its past

offers. Any of these choices should give us an acceptable positive utility, ensuring

142

1.5 SLA Negotiation in Competitive Computational Grids

as well that the opponent will accept it, thus avoiding the negotiation to end

without an agreement.

We note that the time-constrained negotiation framework obtained by the

division of the negotiation interval in k subsets is general enough to be partic-

ularized to a specific learning procedure, considering the more or less available

conditions for the next bid selection. In general, we recommend setting the subin-

terval limits t1, . . . , tk−1 as close as possible towards Tmax , making the agent as

inflexible as possible till very close to the ending time. Thus, the agent will de-

velop a conceder behavior only at the end of the negotiation time, being very

strong-holding up to then.

The particular application presented in here is an opponent model based agent,

which means that it estimates the opponent’s utility and use the estimation to

propose a bid with reasonable utility for the latter. The learning method used

to estimate the opponent’s preferences is Bayesian. The preferences’ estimation

allows the evaluation of the opponent’s utility for any possible bid. Remember

from Section 1.5.2.3 the general form of a decision of our agent, at a given point

in time; that is, to propose a bid that maximizes the utility Ub of the opponent,

while its own utility Uown varies in an interval (umin , umax]:

b = arg max
b′∈{x |Uown (x)∈(umin ,umax]}

U (b ′) (1.11)

The method by which (umin , umax] is updated on a given time interval, gener-

ates less, or more concessions from our agent, for the time interval in discussion.

The baseline for the update of (umin , umax] is the following: umin = umax − δ, and

at each offer, if our bid is refused, then the upper bound of the interval (and

implicitly the lower bound) is decreased. The starting value umax of the upper

bound is represented by the highest utility of the agent, and then it is sequen-

tially decreased. Notice that umax takes the place of the targeted utility τ from

eq. 1.10, from which we accept a deviation of a maximum δ.

Next we explain in detail the strategies of our agent (i.e. the decision rules

to offer a bid plus the method of updating (umin , umax]) for each of the three

particular time intervals considered by our application:

Interval I1 (btw. 0-85% of the total time): Supposing that bt is the last

143

1.5 SLA Negotiation in Competitive Computational Grids

bid proposed by the opponent, then at step t + 1 the own agent will propose a

bid bt+1 that not only maximizes the opponent’s utility, but also ensures that our

agent does not attain an utility lower than the one implied by the opponent’s

offered bid bt . Mathematically:

umin = max{umax − δ,Uown(bt)} (1.12)

Notice that on this time interval, the negotiation game may end only with the

opponent accepting an offered bid; our agent would never accept a bid offered by

the opponent.

Interval I2 (btw. 85-95% of the total time): The conditions for selecting

our next bid are relaxed to the usual umin = umax − δ. Our agent accepts the

offer bt only if Uown(bt) > Uown(bt+1).

Interval I3 (btw. 95-100% of the total time): The concessions our agent

is ready to make increase dramatically. Denoting with ur the reservation utility

for our agent, the update of the lower limit umin will be given mathematically by:

umin = min{max(ur , umax − δ), ec+d(Tmax−t)} (1.13)

where Tmax is the time constraint of the negotiation, c = ln(ur), d =
ln(

u0min
ur

)

(1−0.95)·Tmax
,

and u0min is the last lower bound before entering in the time interval I3.

Notice that for t = Tmax , then

ec+d(Tmax−t) = ur (1.14)

which is the minimum of the given exponential function. For t = 0.95 · Tmax ,

then

ec+d(Tmax−t) = u0min (1.15)

which is the maximum of the given exponential function. The rest of the condi-

tions for selecting our next bid, or accepting an offered bid, remain the same as

before.

It is straightforward to prove that the set of conditions for selecting the next

bid are less and less restrictive as we move from interval I1 to the interval I3

(provided that δ is not too big). Therefore, the requirements of the general setup

are fulfilled.

144

1.5 SLA Negotiation in Competitive Computational Grids

1.5.3.2 Performance optimization

In this subsection we discuss several optimization issues to make the negotiation

strategy presented above usable in practice.

First, we need to note that, the Bayesian learning algorithm represents the

core of the agent, which implies computing a huge matrix with probabilities.

The size of this matrix was presented in subsection 1.5.2.3 and it contains M =

n!×m1×m2×· · ·×mn lines (the total number of possible hypotheses). E.g. for a

domain with n = 7 issues and each issue having 7 nominal choices, results that M

is greater than 4 billions. The basic Bayesian learning updates this matrix at each

step, thus, it results that the agent will spend a lot of time to compute the next

offer. During learning, we can notice that the probabilities P(hj | bt) computed

with the help of eq. 1.8 are very small (close to zero) for those hypotheses hj which

are far away from the opponent’s real profile. Therefore, a first optimization is to

compute the Bayesian probabilities P(hj | bt) only for those hypotheses hj which

together account for more than 95% of the sum
∑M

k=1 P(hk)P(bt | hk). This needs

an additional ordering of the hypotheses, but it highly reduces the number of rows

in the Bayesian matrix. E.g. on a domain with n = 7 issues, each issue having

7 nominal choices, the Bayesian learner converges after about 7% of the total

negotiation time and the relevant hypotheses are only 5% of the total hypotheses

space. Thus, this optimization speeds up the reasoning with about 20 times.

With this optimization, we succeed to speed up our agent, which reasons

much at the beginning and starts computing faster the Bayesian matrix after

this matrix begins to converge. Therefore, within an external imposed time limit

Tmax we succeed to accommodate a higher number of own bids.

Second, given that our Bayesian learner performs quicker as time passes, after

every bid we can compute a value to which is the average of the time elapsed up

to the moment per number of bids. to can be used to estimate the number of

remaining bids up to the end of the negotiation, in the condition that the pace

of the opponent bids remains the same. In this case, if the estimated number

of bids on the third interval I3 is smaller than a threshold, we can dynamically

update the interval limits t1 and t2 letting our agent to fit at least several bids in

the last interval. This optimization is required especially on huge domains where

the initial time of thinking per bid is very high and might happen that very few

145

1.5 SLA Negotiation in Competitive Computational Grids

moves to enter in the last interval. This situation should be avoided, because it

can lead that the designed strategical behavior at the end of negotiation not to

take place and the session to finish without an agreement.

These two optimizations should be considered together with the code opti-

mization presented in [Hindriks and Tykhonov, 2008], which shows how to opti-

mize the Bayesian agent to the huge memory requirements, given that the agent

stores explicitly the list of the hypotheses.

1.5.4 Experimental Results

We implemented the time-constrained negotiation strategy with 3 subintervals

presented in subsection 1.5.3.1, using the Bayesian learning scheme as baseline in

the Genius negotiator [Hindriks et al., 2009]. We named our negotiation strategy

AgentFSEGA.

We have run two batches of experiments. First, we tested our negotiation

strategy against the ABMP [Jonker et al., 2007] and the standard Bayesian [Hin-

driks and Tykhonov, 2008] agents, both publicly available in the Genius negotia-

tor. With this experiment, we show the advance of the reasoning model when

the negotiation time is considered as a constraint.

Second, we investigated the range of the possible negotiation domains and

experimented our agent against the non time-constrained agents used in the first

set of experiments and against other negotiation agents available in Genius which

were especially designed for a game with time constraints.

1.5.4.1 AgentFSEGA against non time-constrained negotiation strate-

gies

As a testing domain we selected the service oriented negotiation [Faratin et al.,

2002] (SON), which fully complies with the SLA formalization presented in section

1.5.2.1. The service described in the SON domain has four issues of interest,

each having 30 possible values. Thus, there are 810000 total number of possible

agreements. The SON domain is huge, in the sense there are a lot of possible

agreements and it requires a very scalable agent. We also tested our agent on

another engineered domain which has only 576 possible agreements, but with a

stronger opposition between payoffs received by the negotiating parties (there

146

1.5 SLA Negotiation in Competitive Computational Grids

(a) The SON domain (b) The small engineered domain

Figure 1.30: AgentFSEGA against itself

are fewer bids mutually acceptable for both parties, thus it is harder to get an

agreement). We set the time limit for a negotiation game to 3 minutes.

In figure 1.30 we depict AgentFSEGA negotiating against itself on both do-

mains. On each axis, we depict the utilities for the negotiating agents. On

both figures we depicted the Pareto frontier (with simple line), service provider’s

bids (with strong circled line) and the opponent’s bids (line with triangles). The

empty square represents the agreement and the empty circle represents the Kalai-

Smorodinsky point. In figure 1.30a we also depicted how AgentFSEGA produces

bids as the time elapses.

We observe that (figure 1.30a), at the beginning of the negotiation, AgentFSEGA

has a strong-holding behavior, supplying bids in the closer vicinity of its best SLA.

More than half of the concession is made only at the end on the negotiation, in

interval I3 after t2. We see that interval I2 assures a smoother transition to the

concession behavior, as we envisaged in subsection 1.5.3.1.

We note that the agreement is established on the Kalai-Smorodinsky point,

in which welfare is maximized and the distribution of welfare is fair. Thus full

cooperation is induced by the game, although the players are self-interested, with

competing utility functions and they do not explicitly cooperate.

Concluding, if both the user and the provider negotiate with similar intel-

147

1.5 SLA Negotiation in Competitive Computational Grids

(a) AgentFSEGA as service provider (b) AgentFSEGA as user

Figure 1.31: AgentFSEGA against Bayesian on the SON domain

(a) AgentFSEGA as service provider (b) AgentFSEGA as user

Figure 1.32: AgentFSEGA against ABMP on the SON domain

ligence, i.e. the same representation of the environment and using the same

opponent modeling technique, the welfare is maximized - therefore it is valuable

to equip a SLA-based environment with such sort of intelligence. This finding

also validates the correctness of our agent implementation.

148

1.5 SLA Negotiation in Competitive Computational Grids

(a) AgentFSEGA as service provider (b) AgentFSEGA as user

Figure 1.33: AgentFSEGA against Bayesian on the small engineered domain

Figures 1.31 and 1.32 present the result of AgentFSEGA playing as a user

or provider against the Bayesian and ABMP strategies on the SON domain.

This experiment models the case of a SLA-based environment with competing

stakeholders of different intelligence. We note that in both cases, AgentFSEGA

does not concede at the beginning of the negotiation.

Similar findings result from the small engineered domain (figures 1.33 and

1.34), even if the agreement point is harder to be obtained, i.e. higher number of

rounds are needed to reach the agreement.

Both experiments show that the time-constrained agent surpass the baseline

agent and other non-time constrained strategies. This emphasize our judgment

that letting the learning strategy to converge is worth to consider, given that

some finite Tmax negotiation time is available.

1.5.4.2 AgentFSEGA’s performance analysis

In this section we discuss the performance of our negotiation strategy, considering

a wide range of domains and agents devised for a competition1[Baarslag et al.,

1We acknowledge the tremendous help from the the Automated Negotiating Agents

Competition (ANAC) 2010. ANAC 2010 competition took place during AAMAS

149

1.5 SLA Negotiation in Competitive Computational Grids

(a) AgentFSEGA as service provider (b) AgentFSEGA as user

Figure 1.34: AgentFSEGA against ABMP on the small engineered domain

2012] with time limits.

The size of a negotiation domain is given by the number of issues and the

number of discrete values for each issue: SZ = m1 × m2 × · · · × mn . SZ rep-

resents the search space containing all possible agreements. For the case of our

negotiation strategy, M = n!×m1 ×m2 × · · · ×mn represents the total number

of hypotheses space of the opponent. Thus, the bigger SZ , the harder is the

negotiation process in general, and the more difficult it is for AgentFSEGA to

learn the opponent’s profile. In table 1.3 we present the characteristics of several

domains considered in this section. Figure 1.35 represents the SLA search cloud

for the domains of table 1.3. The small engineered domain, Itex-Cypress and

Travel1 were used during ANAC 2010. We can observe that the first two domains

are small ones, while Travel has 7 issues and SZ is 188160.

Clouds of figure 1.35 are depicted considering a given specification for the

2010 conference. Further details can be obtained from the competition web page:

http://mmi.tudelft.nl/negotiation/index.php/ANAC 2010 (consulted on 9 August 2011).

ANAC 2010 introduced several new agents in the Genius repository, especially designed con-

sidering the negotiation time as a constraint.
1Further details about the domains can be found consulting the ANAC 2010 paper [Baarslag

et al., 2012].

150

1.5 SLA Negotiation in Competitive Computational Grids

Domain name Number of issues SZ M

Itex-Cypress 4 180 4320

The small engineered domain 5 576 69120

SON 4 810000 19440000

Travel 7 188160 948326400

Table 1.3: Characteristics of several negotiation domains

AgentFSEGA Agent K Nozomi AnAgent

Itex-Cypress buyer 0.671 / 0.721 0.653 / 0.703 0.548 / 0.732 0.576 / 0.776

Itex-Cypress seller 0.721 / 0.671 0.670 / 0.721 0.588 / 0.759 0.588 / 0.759

The small engineered domain - buyer 0.822 / 0.787 0.700 / 0.871 0.611 / 0.924 0.586 / 0.946

The small engineered domain - seller 0.787 / 0.822 0.664 / 0.935 0.664 / 0.935 0.596 / 0.955

SON buyer 0.773 / 0.773 0.882 / 0.587 0.877 / 0.612 0.972 / 0.137

SON seller 0.773 / 0.773 0.847 / 0.622 0.847 / 0.622 0.965 / 0.175

Travel buyer 0.860 / 0.744 0.743 / 0.835 1 / 0.647 0.751 / 0.769

Travel seller 0.744 / 0.860 0.741 / 0.672 1 / 0.198 0.763 / 0.608

Table 1.4: AgentFSEGA against ANAC2010 agents. Columns represent the op-

ponent agents. Each row represents a role played by AgentFSEGA.

consumer and the provider on each domain. We can notice that the consumer and

the provider might have a similar profile - like in the SON domain (figure 1.35c)

and in Itex-Cypress (figure 1.35a). Opposed, on the small engineered domain and

travel, the buyer has fewer acceptable bids, compared with the seller. Thus, it is

relevant to run experiments with AgentFSEGA playing successively both roles.

We tested AgentFSEGA against itself and against Agent K, Nozomi and AnA-

gent. All these latter agents originate from the Genius repository and participated

in the ANAC 2010 competition1. The full logic of these agents can be found in

[Ito et al., 2012] and they were tailored for time-constrained negotiations.

Table 1.4 presents the detailed results. On each domain, when playing against

itself (the AgentFSEGA column), the outcome is an approximation of the Kalai-

Smorodinsky solution for that particular negotiation game. We should note that

in every game, AgentFSEGA scores a fair result. The bigger the negotiation do-

main, the better are the obtained results. This is because on bigger domains, the

learning strategy is powerful and sensible enough to register the variations of the

1Agent K and Nozomi were implemented by the team at Nagoya Institute of Technology

Japan and AnAgent by Bo Ann from the Univ. of Massachusetts Amherst USA

151

1.5 SLA Negotiation in Competitive Computational Grids

(a) Itex-Cypress domain (b) A small engineered domain

(c) The SON domain (d) Travel domain

Figure 1.35: SLA search cloud for several negotiating domains

opponent’s profiles. Even if the domains and the role profiles are not symmetric

(this is the case for the small engineered domain and travel), this fact does not

affect the performance of AgentFSEGA. Figure 1.36 presents the outcomes of the

negotiation games relative to the Kalai-Smorodinsky solution of that game and

compared with the relative opponents’ averaged score. On the small domains,

AgentFSEGA is overpassed by the rest of the agents, but it succeeds to acquire

152

1.5 SLA Negotiation in Competitive Computational Grids

Figure 1.36: AgentFSEGA performance relative to the Kalai-Smorodinsky solu-

tion of a particular negotiation game.

about 80% from the target utility. On big domains, AgentFSEGA performs well,

overpassing the other agents. Even on the travel domain the buyer’s result is

encouraging, because, as the reader can notice from figure 1.35d, on this domain

the buyer has worse alternatives than the seller.

The travel domain is the most difficult, out of all domains we used for testing.

The difficulty resides in the size of the domain, the big number of hypotheses

and the fact that the domain is not symmetrical - one player has better alterna-

tives than the opponent (see figure 1.35d). From figure 1.35d we can also notice

that the Pareto frontier is a bit far away from the cloud of the possible agree-

ments. In figure 1.37 we depict the performance of the FSEGA agent against

itself on this domain. We can observe that the agreement is at the frontier of the

outcomes cloud, on the line that defines the Kalai-Smorodinsky solution. Exper-

imenting on the travel domain against Agent K (the most powerful agent from

the Genius repository), we observe (see figure 1.38) that AgentFSEGA tries to

move the agreement closer to the optimal possible allocation (the one obtained

in figure 1.37).

Out of the experimentation presented above, we can draw two essential con-

clusions. First, if the intelligence employed during negotiation is the same on both

parties, the outcome is approximating the Kalai-Smorodinsky solution, with all

desired properties presented in section 1.5.2.4. Thus, such a sort of intelligence

153

1.5 SLA Negotiation in Competitive Computational Grids

Figure 1.37: AgentFSEGA against itself on the travel domain.

(a) AgentFSEGA as buyer (b) AgentFSEGA as seller

Figure 1.38: AgentFSEGA against Agent K itself on the travel domain

can be a good alternative in open service-based architectures.

Second, if the AgentFSEGA plays against others, it scores fair results. There-

fore, if some malicious user would like to undermine an open service-based system

by replacing the designed intelligence for SLA negotiation, still good SLAs will

result out of the negotiation. In this way, even in the presence of exploiters,

154

1.5 SLA Negotiation in Competitive Computational Grids

the SLA-based open system still succeeds to achieve its goals and continues to

function. The allocation of the system resources is not disproportionate between

the players. Of-course, here we do not claim that our agent is the most intelli-

gent and there is no better solution, but we prove that with a time-constrained

learning agent, we succeed to accomplish one of the important design goals of a

SLA-based open system.

1.5.5 Conclusions and future work

This contribution tackles the automatic SLA negotiation in computational grids

with competing resource owners and consumers. While previous work on SLA

negotiation in grids focuses on providing negotiation models in the bargaining

game, in this paper we introduce a framework for building automatic negotia-

tion strategies under time constraints. We build our work on the latest results

concerning negotiation strategies developed in agent research and specifically, on

the Bayesian learning agent. To instantiate our general framework for intelligent

negotiation strategies under time constraints, we further extend and modify the

Bayesian agent.

We show that the time-constrained negotiation framework can help in building

much robust and better negotiation strategies for service level values establish-

ment, given that time is a key resource. By presenting the implementation of

the Bayesian agent in the proposed framework, we present a valuable experience

about how to extend an opponent modeling-based strategy to cope with the time

restrictions.

In general, we show that an opponent learning-based negotiation strategy is

a valuable asset in SLA-based open grid systems. Empowering the system with

this type of intelligence can result in a equalitarian allocation and fair satisfaction

of participants. Further, such an intelligent agent can become a mean towards

the system dependability, in terms of stability and smooth functioning.

As a further work, other intelligent strategies need to be adapted in the pre-

sented framework and further testing is required, even on more complex and

difficult negotiation domains. We still lack a formal proof that the Bayesian

learning strategy converges towards the desired (optimal) SLA outcome.

155

1.6 Conclusion

1.6 Conclusion

In this thesis, we presented our scientific contributions developed after the PhD

thesis defense. We approached the hot topic of dependable P2P systems and

resource management in heterogeneous environments, contributing with various

results towards the goal of automated collaboration between autonomous sys-

tem participants. While during our PhD, we formally approached collaboration

in multi-agent systems, in this thesis, we presents three major results that can

enhance collaboration in open P2P systems.

This thesis starts with a short introduction to P2P systems. While P2P

systems moves away from the initial file distribution goal towards service-based

P2P systems, we introduced concepts like Service Level Agreements, structuring

P2P systems, economics of P2P systems and the sabotage problem and desktop

grids as a specific sort of P2P system delivering computing power. Related with

all areas enumerated above, we presented some relevant scientific contributions

which represent the state-of-the-art in the field.

Next, we introduced our main scientific contributions. First, we presented the

topic of reputation management in computational grids. We did a full discussion

on the trust and reputation concepts and reviewed other reputation models cre-

ated for grid and P2P environments. Our reputation model is formally described

within the SOA-based requirements, around the quality of service concept. The

formal description of the model, depicted in the Z notation, employs the concept

of utility. Rather than assessing peers based on the subjective testimonials of

third parties, our model uses the monitoring services widely available in grid and

P2P environments to collect traces about peers behavior. The reputation model

is validated by experimentation with SimGrid and two usage patterns are pro-

posed: (i) to assess the provider reliability in scheduling operations and (ii) to

supply a user access model to grid resources.

The second major contribution tackles the problem of sabotage in P2P-enhanced

desktop grids. While desktop grid nodes are linked by a P2P overlay and can

communicate between them, they can exhibit colluding behaviors that might un-

dermine the desktop grid. We defined five strong colluding behaviors and propose

models to tackle them. Our statistical classification toolbox allows to distinguish

with certainty, which are the honest peers in the desktop grid - in the sense that

156

1.6 Conclusion

they do not enter in collusion with others. Therefore, the remaining peers might

be colluding ones and a cheap auditing can clearly decide which are or not the bad

nodes. The solidity of our algorithm was in-depth demonstrated by experimen-

tation, considering the full range of population structures and realistic desktop

grid assumptions. We helped in the elaboration of the Maximum Independent

Set approach for characterization of the peers, that further enables to tackle the

whitewashers.

Our third contribution regards the strategic behavior of peers when negotiat-

ing about service delivery terms in bilateral interactions. Given the negotiation

setup described in WS-Agreement Negotiation standard, we proposed a frame-

work for constructing strategic behaviors, given that limited time is allowed for

the bilateral negotiation process. All we require is that the peer to use some

opponent-learning tactic. We envisage that the node should keep strong with his

offers at the beginning of the negotiation time, in order to let the opponent learn-

ing scheme to converge and to have a better understanding about the opponent

profile. Only when the negotiation time is about to elapse, our agents are making

concessions, in order to achieve a reasonable deal. With our framework, we con-

structed a SLA bidding strategy starting from the baseline Bayesian agent. With

this strategy, we played many negotiation games against various other agents

proposed by the literature and we showed that, in general, we obtain good SLAs

and we keep a fair division of resources within the society.

With this thesis, we showed that concepts, tools and models extracted from

economic theory are worth for consideration in distributed computing, in order

to design automated systems with open participation and enhancing loose collab-

oration between participants. As we presented in our future research prospects,

economic theory might help to design the business models of nowadays comput-

ing service providers, given that resources originate in private and public clouds,

grids and desktop grids.

157

Chapter 2

Career Development Plan

2.1 Teaching directions

In this section, I presents the on-going and future directions in what concern my

teaching activity. My teaching activity is subsumed to the fact that I hold the

chair of Business Information Systems (BIS) at Babeş-Bolyai University (BBU)

of Cluj-Napoca and I’m the study director of the Bachelor program in Business

Information Systems at BBU.

According with The Joint Task Force for Computing Curricula 2005 [2005],

Information Systems (IS) represents one of the main directions for computing-

oriented study programs in USA and internationally, together with computer

engineering, computer science, information technology and software engineering.

Specialists on IS focuses on integrating IT solutions and business processes to

meet information needs of businesses and other enterprises. It emphasizes on

information and its key role in the enterprise, around the systems and technologies

that generate, process and transmit information.

The Computing Curricula 2005 referred above, clearly position the IS degree

programs in correspondence with the other sorts of computing degrees, recom-

mending the suitable disciplines that should be part of a BIS curricula and also,

what competencies and abilities a BIS degree graduate should possess. In accor-

dance with these world-wide adopted recommendations, considering the speci-

ficity of the Romanian software market and business environment, together with

my colleagues in the BIS department at Babeş-Bolyai University under my direct

158

2.1 Teaching directions

coordination, during spring 2010 we revised the study plan for the BIS bachelor

degree offered by BBU.

Consulting the ACM/AIS Model Curriculum and Guidelines for Graduate

degree programs in IS [Gorgone et al., 2006], following a research about the

disciplines delivered by European universities in IS master programs, in parallel

with the revision at the Bachelor level, we revised the study plans for the two

master programs offered by the BIS department at BBU: EBusiness and Decision

Support Systems for Business.

All three programs mentioned above were assessed by the Romanian Agency

for Quality Assurance in Higher Education in June 2011, obtaining its credential

with the highest possible degree.

This section evolves as follows: subsection 2.1.1 presents the three study pro-

grams running part of the BIS department at BBU. I will emphasize on the flows

of the study topics, the competencies we give to the graduates. This section briefs

the achievements and the improvements we introduced in the last two years, un-

der my direction. Next, in subsection 2.1.2 I describe the items I see mandatory

for the evolution of those three degree programs in the following years.

2.1.1 Status Quo

Our study program in BIS resulted out of the national consultations that took

place between 2005-2006, together with the adoption of the Bologna process in

Romania. In autumn 2009, further consultation at national level happened in

order to unify the competencies delivered by the Romanian Bachelor study pro-

grams in Information Systems. In 2009, I took part of these consultations, as

study director and local chair of BIS.

This last consultation decided that Romanian study programs in IS should

deliver their students with the following core competencies:

• Usage of concepts, theories, and research methods for business processes

• Efficient usage of computer systems, operating systems and Internet, in-

cluding the team development of efficient solutions for management and

configuration of operating, communication and computer systems

159

2.1 Teaching directions

Figure 2.1: The study plan for the Bachelor program in Business Information

Systems at BBU

• Professional usage office software for business purposes, including the design

of a flow-oriented business process for data processing

• Development of software components using data structures, algorithms, pro-

gramming techniques and advanced programming languages

• Development of software applications using databases, multimedia resources

and client-server technologies

• Maintenance of information and computer systems, including business anal-

ysis and requirements gathering for information systems, system design and

software process management

Figure 2.1 presents the structure of the study plan for the BIS Bachelor pro-

gram, as evaluated by ARACIS on June 2011 visit. ARACIS acknowledges that

the BIS study program presented below fulfills the core competencies presented

above and represents a high quality BIS program in Romania.

160

2.1 Teaching directions

According with the Bologna principles, the Bachelor study program is orga-

nized in 6 semesters. The first three semesters are common with other business

programs offered by the Faculty of Economics and Business Administration at

BBU. Students get the basic business topics like fundamentals of management,

marketing and accounting. They learn how to administrate a company with sub-

jects like finance and financial accounting. Besides these business fundamentals,

they also learn core economics, including micro and macro economics, fundamen-

tals of mathematics applied to economics, actuarial mathematics and descriptive

statistics. During these introductory semesters, students get only flavors for IT

for business, learning tools like MS Office (with emphasize on Word, Excel and

PowerPoint), MS Access and FoxPro, being able to handy operate with spread-

sheet processors and databases. After these three semesters, students get a core

business-oriented competencies, as advised by The Joint Task Force for Comput-

ing Curricula 2005 [2005].

The BIS program really starts only in semester 4. From this point up to the

end of the study plan (semester 6), students get computing topics, grouped in

four main pillars: (i) software programming and design, (ii) databases, (iii) web

technologies and (iv) IT and enterprise disciplines. The subjects and technologies

for the courses covered in these last three semesters are selected such as the

students to be able to compete in the jobs market with graduates from theoretical

computer science and computer engineering.

On the software programming and design pillar, students get the fundamentals

of programming and algorithms and data structures subjects, both delivered with

the help of the C programming language. Next, in the 5th semester, students learn

the object-oriented programming principles in Java and a first Rapid Application

Development tool (Microsoft .NET). Despite the fact that western IS programs

does not offer a clear development tool-oriented course, like .NET, we opted to

introduce this subject to our students, given the strong requirement of the job

market for .NET programmers. After the completion of the 5th semester, students

are able to design and implement small programs in various languages (C, Java

and .NET), including web programming in PHP. Therefore, in the last semester,

they can learn how to organize and manage larger software projects, by having a

first topic of software engineering.

Part of the databases pillar, students learn the fundamentals of database sys-

161

2.1 Teaching directions

tems, including structuring a database, the normal forms and relational database

management systems. The course delivered in the 5th semester also covers rela-

tional algebra and QBE and introduction to SQL. The second advanced course

in databases (6th semester) covers distributed database structuring and working

with the Oracle DB server. Students deeply learn PL/SQL.

The web technologies pillar grows from the basic computer graphics course of

semester 4, which introduce the students to front-end web programming (includ-

ing cascading styles and front-end scripting). During the 5th semester, students

learn back-end web programming with PHP, getting the grasp of a widely used

web technology. The 6th semester course asks the students to design and de-

velop larger web projects, including virtual stores, moving them into the world

of E-Commerce technologies.

Besides these 3 pillars, where the students get knowledge and competencies

highly asked by the local job market, the study plan includes other mandatory

subjects for computing degree graduate: computer networks, operating systems,

fundamentals of artificial intelligence, software testing - there is a large demand

on the local market for testing engineers and ERP systems operation.

The study plan presented above get crystallized in during the consultations

that took place between 2005-2006, with the adoption of Bologna process in Ro-

mania. With the revision of spring 2010, we introduced the second programming

class in the 4th semester - responding the ask of the students to give them double

time for learning the basic programming, we changed the focus of the object-

oriented programming class from C++ to Java, we introduced the world-wide

adopted study materials for disciplines like Software Engineering and Artificial

Intelligence.

At the master level, each Romanian university has a higher autonomy to

decide about the clear specialization of a master study program and the specificity

of that program. The BIS department at BBU decided to deliver two master

programs: one oriented on web technologies - named EBusiness, and one oriented

on enterprises - named Decision Support Systems for Business (SADE). Figure

2.2 presents the study plans of these two master programs. Initially, these master

programs were devised together with the Bachelor program in BIS. The study

plans described in figure 2.2 emerged after the revision that took place on Spring

162

2.1 Teaching directions

Figure 2.2: The study plans for the two master programs in Business Information

Systems at BBU

2010. That revision includes the outcomes of a study including the ACM/AIS

guidelines for master programs in IS [Gorgone et al., 2006] and disciplines offered

by western universities in similar study programs. The ARACIS visit of June

2011 evaluated these two programs and gave them full support and the biggest

degree of confidence.

For these two master programs, we recommend our Bachelor graduates in

BIS to continue at the master level, in order to complete and strengthen their

IS background. The fulfillment of the BIS Bachelor degree is not a mandatory

entry requirement, the master programs being open to both other business and

computing programs graduates. The first study year is common for the two mas-

ter programs, consisting of disciplines with mandatory technological and business

background. The 3rd semester represents the specialization of each master pro-

gram. The 4th semester lets the students to decide about elective classes and to

prepare their dissertation.

The first joint specialization study year consists of the disciplines grouped in

three main categories: (i) business subjects, (ii) information systems design and

163

2.1 Teaching directions

development and (iii) technologies.

To be prepared for the business environment, students should possess strong

communication skills offered by a course of language inter-cultural communication

in business. Being prepared to overtake decision level position in business, stu-

dents should get competencies in business governance and financial management.

Inference skills are also mandatory, therefore, the study plan includes inferential

statistics.

The information systems design and development pillar represents the core

specialization of a master degree in IS [Gorgone et al., 2006]. Therefore, stu-

dents take an advanced programming class and two classes of advanced software

engineering and management of software projects.

The technologies pillar is also of major importance. Given the nowadays move

of computing towards virtualization and networked applications, students should

take the basics of distributed systems and parallel programming. Knowledge

management is mandatory for both web-based or enterprise information systems.

A core course in Computational Intelligent methods allow the students to get the

fundamentals of datamining and evolutionary computing.

The EBusiness program is specialized for web-oriented information systems.

Therefore, students get a class of Mobile Business, one of EBusiness design and de-

velopment covering Business Process Management, Security in EBusiness, EBusi-

ness technologies and applications and virtual business.

The SADE program is specialized for enterprise information systems. Stu-

dents take modern classes of Business Intelligence - learning the Oracle Business

Intelligence solution, Expert systems, Decision Support Systems, advanced ERPs

- where they learn the fundamentals of the SAP technology and programming

with components - enabling students to devise complex software applications.

The 4th semester let each student to choose his study path. We offer them

electives from a wide range of topics, like Cloud computing, software quality

assurance, human computer interaction - to enable students for professional GUI

design, social networks and websites optimization - for a stronger web orientation,

and game theory and ELearning as niche classes. Besides following two out of the

above enumerated classes, students should prepare their dissertation and strongly

interact with the dissertation advisor.

The revision of the study programs in spring 2010 - which I coordinated,

164

2.1 Teaching directions

consisted on the following additions:

• Introduction of inferential statistics, instead of marketing specialized class.

We considered that inferential statistics better fits the computing orienta-

tion of a IS master graduate

• Introduction of the topics of distributed systems and computational intel-

ligent methods. We considered that these topics are mandatory, given the

current advances in computing, towards world-wide information systems,

virtualization and multi-core enabled hardware. I particularly contributed

in devising new study materials for the class of Computational Intelligent

Methods and some lectures for the Distributed Systems class

• The knowledge management class started to contain web-based knowledge

management topics and uses tools from Semantic Web

• Introduction of the Business Intelligence and Expert systems classes for

SADE

• Introduction of the Security in EBusiness and Technologies and applications

in EBusiness for the EBusiness program

• Changed the 4th semester elective classes, by adding classes of software

quality, cloud computing, HCI, social networks and websites optimization.

We also enabled all students to select from all available topics, giving them

freedom to select their most appropriate elective.

Students acknowledged the Spring 2010 revisions of the IS study programs.

Now, both the Bachelor and the master study programs entered their second

generation of students. Particularly, the 3rd year BIS students and our master

students registered during 2009-2010 were consulted during the revisions of the

study plans.

During summer 2010, after the new study plans were released to all students

of the faculty, the BIS study program was selected by 137 students, currently,

having them registered on the 3rd year of the Bachelor BIS program. This is the

biggest figure of students the BIS degree at BBU ever recorded. On summer 2011,

more than 100 2nd year students of the faculty selected the BIS program. And,

165

2.1 Teaching directions

on the same summer, during the admission process to the university programs,

we recorded a demand of more than 200 students to be registered in the 1st year

of study. We were able to a

The master programs attracted on average a total of about 50 students / aca-

demic year. On the academic year 2011-2012, we recorded 44 students registered

to the EBusiness program and 19 to SADE.

2.1.2 Didactic proposals

In this subsection, I will present several directions to further improve the above

presented study programs. I will present my opinions about future improvements

to the mentioned study programs, according with two world-wide initiatives.

First, we mention that ACM and AIS joint task force produced in May 2010 a

new IS undergraduate curriculum guidelines [Topi et al., 2010]. These guidelines

acknowledges the challenges in front of the information systems development pro-

cess: the globalization of the software development process, ubiquitous use of web

technologies, the emergence of new architectural elements including web services,

software-as-a-service and cloud computing, integrated ERP systems, pervasive

mobile computing and governance models applied to best practices in IT.

Second, we mention the NSF/IEEE-TCPP Curriculum initiative on Parallel

and Distributed Computing - Core Topics for Undergraduates1. The IEEE Tech-

nical Committee on Parallel Processing established this initiative to setup basic

guidelines of parallel programming and distributed computing items adoption as

early as possible by various computing-oriented undergraduate programs. We

participated in the first workshop of this initiative that took place part of IPDPS

2011 conference and in-line with the findings and the challenges recognized by the

IS2010 document [Topi et al., 2010], we consider that is worth of consideration

of various such guidelines.

Curricula orientation towards facilitating students early entering

the jobs market

In order to facilitate our students entering the jobs market, our degrees need

to deliver those competencies, skills and abilities required by the companies, es-

1http://www.cs.gsu.edu/ tcpp/curriculum/?q=home

166

2.1 Teaching directions

pecially by those located in our vicinity. Thus, a strong collaboration between

us and the local companies would be required. We target for our students jobs

like business analyst, software analyst and consultant, software developer, soft-

ware engineer, software/system architect, project manager, web developer, web

designer and web engineer, database expert, quality assurance expert, or IT ex-

pert. Local software houses operating around Cluj-Napoca represent the most

wanted companies for our students, but they can find good placements in com-

panies operating in other business sectors. Regularly, we meet representatives of

the companies in order to adapt our curricula. The introduction of the Software

testing topic in the Bachelor curricula came out of such a consultation.

Below, we present our focused proposals with this respect.

• at the Bachelor level, teach the students those fundamental topics of com-

puter science that are mandatory for a good software engineer, like ba-

sic programming, object-oriented programming, fundamentals of databases

and fundamentals of software engineering

• exemplify the fundamental computer science concepts with up-to-date soft-

ware tools and languages. E.g. we envision the shift on teaching object-

oriented programming from C++ to Java or usage of modern tools for the

Software engineering

• in terms of programming languages and software technologies, try to cover

as much as possible. We teach C, Java, .NET, PHP and Oracle.

• at master level on the 3rd semester, ask companies to deliver specific course

modules of their interest. Many local companies attract their employees

by offering them courses organized in-house. With this proposal, we ask

companies to organize their lectures part of our curricula, directly targeting

our students with specific topics. We experienced good collaboration with

MSG Systems1 - who delivers a SAP course, and iQuest International2 -

who deliver a Business Intelligence module. Both collaborations are part of

the DSS for Business MSc program.

1http://www.msg-systems.ro/
2http://www.iquestint.com/

167

2.1 Teaching directions

• propose companies to host master students during the 4th semester in order

to help them to elaborate their dissertation. Realization of the dissertation

inside a company is common for western universities, while in Romania,

this practice is only at the beginning. How it works: the company propose

a dissertation topic to the student; the student - together with the advisor

from the university, agrees on the topic; and the student works on the topic

and elaborate the dissertation inside the selected company. For such a joint

dissertation with companies, a student works in the company for at least

three months and has a better chance to see and learn the industry working

style. The companies have the advantage to target the best students before

their graduation. In general, good joint work is produced out of such joint

projects, but a student doing the dissertation like this, in general, will put

a higher effort in his work comparing with the case he works alone for the

dissertation.

Introduction of modern topics changing the information systems

today

During history, every computing era was characterized by some major tech-

nological innovations that shifted the whole science and industry. Today, we face

the transition towards computers equipped with multi-core processors. Thus, as

acknowledged by various institutes, including the IEEE and NFS, students need

to be faced with parallel and distributed technologies as early as possible.

We propose the following punctual directions to be adopted in our curricula:

• teach students the core parallel architectures and basic low-level program-

ming as soon as possible. The Operating Systems course should be adapted

to the novel multi-core technologies and should exemplify the organization

and architecture of the multi-tasking operating systems. Introduction to

programming course should include a module dedicated to low-level pro-

gramming with pointers

• the Algorithms and Data Structures course should exemplify the core algo-

rithms also with their parallel implementations

168

2.1 Teaching directions

• the Rapid Application Development course should include a module about

multi-threading

• the Advanced Databases course should contain a module about distributed

databases

• at the master level, the Distributed Systems course should introduce the

main parallel programming models and present architectural issues about

distributed systems organization

• at the master level, the Emerging web technologies course and Cloud com-

puting should introduce the students the facilities available from virtualiza-

tion and de-localized computing.

Keep a strong focus on the specific items of Information Systems

management and development

Information Systems represent the core subject of our degrees. Thus, be-

side everything else, we need to keep a strong focus on the specific subjects of

Information Systems. Our punctual proposals are as following:

• reorganize the Software engineering disciplines in order to teach students

both the software process - including the management of the software pro-

duction life cycle, and the software engineering - including the techniques

about how to build robust information systems

• provide the students with a specific discipline tackling Requirements Gather-

ing. As we see our students as business analysts and software consultants,

they need to know how to formally interact with the business people for

analysis and gathering the specific requirements of an information system

• provide students with a specific discipline tackling organization of infor-

mation processes within organization. We refer here to Business Process

Management - engineering and re-engineering information workflows within

organizations

• give students abilities about how to deploy, operate and manage IT or

software instruments within organizations and let them during the studies

to experience with systems like ERPs, EASs or others

169

2.2 Research directions

2.2 Research directions

In this section I will present a research proposal for the 3 years, intended for a

small group of 5 researchers: one principal investigator, two postdoc researchers

and two phd students. Before presenting the research proposal, I will shortly

introduce the research group on automated collaborative systems, which I es-

tablished part of the Business Information Systems department at Babes-Bolyai

University.

2.2.1 Research group on automated collaborative systems

In 2008, Gheorghe Cosmin Silaghi established the research team focusing on au-

tomated collaborative systems, part of the Business Information Systems depart-

ment. Part of this team, several PhD students - Mircea Moca, Cristina Stefanache

and Ioan Petri, graduated their theses and published valuable contributions. Cur-

rently, the team hosts another 2 PhD students - Gabriela Morar and Cristina

Muntean, scheduled to finish their PhDs on September 2012 and several master

students worked as researchers (Liviu Dan Serban - graduate student of class

2011, Alexandru Butoi and Andreea Ilea graduate students of class 2012). The

experienced researchers part of the team are G.C. Silaghi, Cristian Marius Litan

(PhD in Economics - game theory from Carlos III University Madrid), Mircea

Moca and Prof. Dr. Nicolae Tomai - PhD advisor in Romania. This research

team represents the foundation on which G.C. Silaghi started to be involved in the

FP7 security research projects mentioned in the CV. The main research idea of

the team is to investigate and employ fundamental research results (mainly origi-

nating from artificial intelligence and economic theory) in developing information

systems of practical usage, especially from the field of distributed systems.

The research group led by G.C. Silaghi is involved in collaborations with

groups from abroad, including Prof. Omer F. Rana from Cardiff University, Gilles

Fedak from INRIA Lyon France, Prof. Catholijn Jonker from Delft University of

Technology, Radu Prodan from Innsbruck University and others.

The long term objective of G.C. Silaghi is to establish and run - based on the

core researchers named above, the Research Center in Business Information Sys-

tems at Babes-Bolyai University with independent funding, based on the projects

won by its members.

170

2.2 Research directions

2.2.2 Efficient resource management in heterogeneous clouds

2.2.2.1 Problems

Nowadays, computing undergo a big movement towards virtualization and us-

age of cloud resources on pay-as-you-go basis [Buyya et al., 2008], while each

company and department carefully decides about acquisition of new hardware

and software and the increased utilization of the existing computing infrastruc-

ture represents one major business objective. All this movement happens in the

context of modern enterprises delivering high technology added-value products,

with growing demand for high performance computing infrastructures. Commer-

cial cloud computing enables the separation between a software service owner

responsible for updating and managing a software capability encapsulated as a

service and an infrastructure provider, primarily offering computational, data

and network resources that may be used to deploy the software service. When

offering the cloud services as infrastructures, the end user gets a virtual machine

equipped with some software stack and then, it can control the operating system

of the machine and run the installed software. In this research proposal, we will

tackle the business of a Software-as-a-Service (SaaS) provider, who intends to

optimally deliver its software capability, while not owning enough infrastructures

to meet all its customers demand. The problem is relevant for the nowadays

computing, with the emergence of IaaS providers like Amazon Elastic Compute

Cloud - delivering virtual machines on request, with the emergence of virtual

appliances marketplaces - like the VMWare VA marketplace - where one can find

its requested software appliance ready to be deployed on a new infrastructure

and multi-tenancy, where a single instance of a running software serves multiple

tenants.

We can shortly formalize the addressed problem as following. A service owner

acts as a SaaS provider, delivering, on demand, some services to his clients. Ser-

vice delivery between the client and the service owner is regulated by a service

level agreement (SLA), mentioning the quality of service (QoS) properties, the

price paid and the penalties incurred by the provider for violating the SLA. For

service delivery, the SaaS provider owner uses a heterogeneous cloud, being able

to launch new tasks on existing computing nodes or to deploy new virtual ma-

chines over various infrastructures, including private clusters with limited resource

171

2.2 Research directions

availability, IaaS providers like Amazon EC, volunteer computing resources like

BOINC-based projects or other cycle stealing HPC systems like Condor or other

sorts of resources. We assume that the service owner sees all these heteroge-

neous (cloud) resources as a large-scale data center comprising n heterogeneous

computing nodes, grouped according with their location or their provider. Each

computing node has a CPU with performance defined in MIPS, RAM and ex-

ternal associated storage with various capacities and some network bandwidth

for data transfer. During our research activity, we will identify other properties

of the computing nodes that might become relevant for our study. During time,

customers submit requests with various service level needs to the SaaS provider

and this should deploy virtual machines over the available computing nodes or

should instantiate new computing resources in order to fulfill the user requests.

We will investigate and define the business models and the options available

for SaaS provider for his resource management, in order to achieve one or several

desired efficiency properties, as follows: (i) total profit maximization, (ii) profit

maximization per customer request, (iii) increased customer satisfaction - mean-

ing that the provider would target to serve as many customer requests as possible,

(iv) reliability - meaning that the provider would target to successfully serve the

accepted requests, (v) energy efficiency. Other efficiency metrics could also be

defined and investigated. We consider that the service owner business evolves in

a computing environment characterized by varying customers demand, various

pricing policies developed by the owners of some heterogeneous infrastructures

or costs (including the ones for the supply of the non-functional customer re-

quirements) incurred by other infrastructures, including the networking and new

infrastructure deploying costs. To achieve efficiency - related with one or more of

the properties enumerated above, the service owner might take tasks scheduling

decisions, consider resource allocation policies, solve the trade-offs between cost

and energy consumption and performance, might consider virtual machine and

data migration policies between computing nodes, computation and data repli-

cation in the attempt to increase service delivery reliability and minimize SLA

violations. To analyze and solve the problems mentioned above, we will adopt an

agent-based approach, depicted in fig. 2.3.

Three sorts of agents are relevant in our approach: the computing node agent

(CNAg) - managing the computing nodes, the infrastructure owner agent (IOAg)

172

2.2 Research directions

Figure 2.3: An agent system deployed for managing a heterogeneous cloud in-

frastructure

- managing all nodes deployed on a given infrastructure and the provider agent

(PAg) - responsible to dealing with the customer requests and deciding about

some resource allocation per request. We devised this three layered architecture

with autonomous agents in order to allow decision decentralization and assure

self-healing and self-organization properties to the overall system, permitting

bottom-level agents to decide on various problems, transparent of their upper

level coordinator. Thus (e.g.), CNAg residing on the same infrastructure, might

decide to migrate VMs or tasks between their computing nodes in order to mini-

mize energy consumption or avoid overheating, IOAg can compete between them

to attract tasks on their managed infrastructure from the PAg etc. With this

approach, we will need to define interaction protocols and behaviors for these

sorts of agents and we can investigate the effect of some policies (like resource

pricing policy, replication policy etc.) over the performance of the service owner.

We also allow gradual introduction of novel infrastructure types to the system,

or of novel infrastructure providers.

Below, we present the state-of-the-art with respect to the problem described

173

2.2 Research directions

above. We position our research proposal with respect to this state of the art.

Only recently, after cloud adoption, literature started to tackle problems like

the ones mentioned above. Litoiu and Litoiu [2010] take position towards optimal

resource management within the SLA regulated generic SOA model. They define

the cloud cost and penalties for SLA violation and the mathematical equation

that should be optimized for profit maximization, given some constraints. Bel-

oglazov and Buyya [2010] position themselves towards energy efficient resource

management in virtualized cloud data centers, identifying some research chal-

lenges with this respect and providing some simulation results with respect to

some allocation policies. Thermal management as suggested by Sharma et al.

[2005] can bring further energy savings. Sedaghat et al. [2011] enumerate some

problems faced by a cloud infrastructure provider, surveying various contributions

related with cloud management, including the adoption of the business concern

by low level managers, solving the optimization problems for satisfying the ser-

vice business objectives, and autonomic management solutions. They formulate

an overall unified governance model towards commercial management of a cloud

infrastructure provider, but their model is not validated and is targeted towards

IaaS providers. A Service Level Agreements (SLA) is a contractual obligation

between a provider and a consumer defining the mutually agreed expectations

[Andrieux et al., 2007] and it represents the key element towards a business

ready infrastructure empowering the service economy in a flexible and depend-

able way [SLA@SOI Consortium, 2008]. In the context of cloud computing and

the SaaS delivery model, as indicated by the RESERVOIR model [Rochwerger

et al., 2009], SLA management represents the key element, software components

being responsible to dynamically adjusting the committed resources for service

level objectives fulfillment and reducing the number of SLA violations. SLA man-

agement will stay in the center of our approach, as indicated by the literature.

Recent papers propose solutions to achieve various efficiency properties. Task

scheduling heuristics are among the most studied. Our interests go for stud-

ies developing heuristics for commercial setups, where providers are maximizing

their profit, meantime fitting the agreed SLAs, or maximizing the delivery perfor-

mance within some budgetary constraint. Salehi and Buyya [2010] propose two

scheduling policies based on cost and time optimization for a service provider

who needs to increase its local resources by hiring additional infrastructure from

174

2.2 Research directions

Amazon EC2. Silva et al. [2008] propose a heuristic to optimize the number of

VM to be allocated on a particular infrastructure for a bag-of-tasks, with bud-

getary constraints and for a maximal speedup. Paton et al. [2009] optimize the

utility function based on response time and number of QoS target met in order to

program an autonomic workload mapper that assigns tasks on various execution

sites. Moon et al. [2010] use cost-based scheduling of cloud resources for profit

optimization. Wu et al. [2011] define a mathematical model for the profit and

minimize it, while reducing the number of SLA violations, when considering the

mapping of tasks to virtual machines hosted by own cloud resources or a rented

infrastructure.

Energy efficiency attracted several recent contributions, in-line with the prolif-

eration of green computing. Goiri et al. [2012] propose a scheduling technique for

energy efficiency in virtualized data centers, dealing with multiple facets restric-

tions, like economic modeling of the provider benefits. Their study is restricted

to a virtualized data center and their heterogeneity refers to various capabilities

of the computing nodes and various ownership of hosts is only briefly considered.

Kliazovich et al. [2010] introduces GreenCloud a simulator that captures details

of the energy consumed by data centers components, allowing simulations of re-

source management schemas for data centers components. Energy reduction can

be obtained by task consolidation, and Lee and Zomaya [2012] propose heuris-

tics for energy-conscious task consolidation, accounting both the active and idle

energy consumption.

Autonomic management and self-organization is another issue approached

when dealing with cloud resources management. IBM Tivoli Intelligent Orches-

trator [Das et al., 2006] represents an agent-based solution for automated provi-

sioning for Internet data centers, being capable to deploy and optimize resources

at run-time in response to changing business objectives. Li et al. [2009] present an

autonomic deployment solution for new applications on the CERAS cloud, given

cost and QoS constraints, based on tracked performance model built from oper-

ational data for adjusting the deployment. Part of the FOSII project financed

by the Vienna Science and Technology Fund, Maurer et al. [2010] implement a

knowledge management system on cloud resources with help of advanced moni-

toring and autonomous control. Ranjan and Zhao [2011] propose a peer-to-peer

approach for managing the services offered by a large scale, dynamic and evolving

175

2.2 Research directions

cloud environment. The P2P approach with its routing and information dissem-

ination particularities, avoids the bottlenecks of the centralized and hierarchical

system approach.

We plan to integrate desktop grids and volunteer computing as part of the

heterogeneous cloud resources. Their main property is the uncertainty, because

one desktop grid node might disappear at any time, without returning the results

for its assigned tasks. Thus, of risk management will become essential, as the

SaaS provider should have warranties that its deployed tasks are solved, even

in the volatile conditions of the desktop grid nodes. Building profitable systems

on such resources is not a new idea; we mention here the study of Popovici and

Wilkes [2005] which evaluate profit-based scheduling and admission control algo-

rithms, addressing especially the resource-availability uncertainty. The study of

Irwin et al. [2004] presents a value-based task scheduling, considering that a task

yield decays linearly with its waiting time. They follow the metaphor that the

heuristics balance the risk of future costs against the potential for gains in ac-

cepting and scheduling tasks. Risk analysis is performed commercial computing

services [Yeo and Buyya, 2009], with the help of metrics like reliability, profitabil-

ity, performance and volatility. For cloud systems, Fito et al. [2010] propose the

SEBCRA toolkit for BLO-driven risk management, by assessing the impact of

a violating a BLO, correlated with the probability of such event to happen. In

general, on desktop grids replication is used to assure computation reliability and

protection against sabotage [Silaghi et al., 2009]. On cloud computing market-

places, trust management systems like the one devised by Habib et al. [2011] can

help customers for selecting the appropriate provider.

Up-to-date, various providers delivered cloud software that allows one to build

private clouds on-demand. We mention here only open source platforms like

Open Nebula1, Eucalyptus2, OpenStack3, Nimbus4 or CloudStack5. Simulators

like CloudSim6 or MDCsim [Lim et al., 2009] allow researchers to seamless model,

simulate and experiment emerging cloud infrastructures and services, before the

1http://opennebula.org/
2http://www.eucalyptus.com/
3http://openstack.org/
4http://www.nimbusproject.org/
5http://www.cloudstack.org/
6http://www.cloudbus.org/cloudsim/

176

2.2 Research directions

real implementation of a design decision. CloudCast [Montresor and Abeni, 2011]

presents a PeerSim1 implementation of a message-diffusion protocol for extend-

ing a cloud environment with resources collected from P2P environments. Thus,

PeerSim also represents an option for cloud simulation. Other solutions like

EmotiveCloud2 or Aneka3 allow programmers to use various popular program-

ming models like MapReduce, Task or Thread and seamless deploy applications

in multiple infrastructures, including desktop grids. CometCloud4 enables the

deployment of real-world applications of hybrid federated infrastructures, includ-

ing public or private clouds, grids or data centers. Hadoop5 allows one to write

programs for large datasets for distributed processing across thousands of ma-

chines.

In general, all these software are in their beginning, being not easy to deploy

them or to work with their APIs. All of them need further developments and new

models about how to distribute tasks on the infrastructures and self-organization

could be devised.

2.2.2.2 Objectives

Our main objective is to study various alternatives available for a SaaS provider

in order to efficiently deliver its services, making use of heterogeneous infrastruc-

tures. We will investigate and define the business model of a SaaS provider from

various efficiency perspectives, including profit maximization, energy efficiency,

risk management or customer satisfaction. We will consider at least the following

infrastructures: public cloud providers, private clouds and desktop grids, all with

their practical properties. The business model of the provider will include its

pricing policy, the SLA establishment and delivery policy, the rules that manages

the SaaS provider interaction with its infrastructure suppliers and the service de-

ployment model. To optimize the SaaS provider business and deployment model,

we will use a market-based approach, with a collection of agents deployed for each

infrastructure component, and organized such as to emerge the good will out of

1http://peersim.sourceforge.net/
2http://www.emotivecloud.net/
3http://www.manjrasoft.com/products.html
4http://nsfcac.rutgers.edu/CometCloud/CometCloud/CometCloud Home Page.html
5http://hadoop.apache.org/

177

2.2 Research directions

competing interests. Several sub-objectives are subsumed:

• To design the provider strategy for tasks and data placement on various

infrastructures

• To design the task and VM migration strategy between the nodes of a local

cloud infrastructure or from a IaaS provider to another

• Design the risk management policies, given the efficiency goal of the SaaS

provider

• Show how the business model of the SaaS provider changes with the changes

of the properties or cost models of the IaaS providers, or by considering a

new alternative IaaS provider.

The agent-based solution employed for achieving the self-organization of the sys-

tem will represent the main originality issue. The agent system will allow the

realization of the efficiency properties. We will employ techniques from eco-

nomics - including mechanism design and machine learning, in order to design

the interaction protocols between agents and in order to predict and anticipate

future customers’ demand.

2.2.2.3 Impact

As cloud computing is an emerging field, our research will complement the exist-

ing cloud research with our novel agent-based approach. For the biggest impact,

we envisage that our scientific results to be presented at top conferences includ-

ing IPDPS, EUROPAR, CCGRID, IEEEE/ACM CLOUD and GRID and others

and we will submit journal publications to top journals like Future Generation

Computer Systems, Journal of Parallel and Distributed Computing, Concurrency

and Computation: Practice and Experience, Journal of Grid Computing, Journal

of Supercomputing, and others. For the agent research community, our approach

will represent a good use case, showing how fundamental agent research can be

deployed to solve problems originating in other domains. The impact will be

higher, as we envisage that we will develop novel agent interaction protocols

that can constitute scientific contributions for the agent research field. A better

understanding of the business model of a SaaS provider will lead to increased

178

2.2 Research directions

competition (and probably lower prices) in the service providers market, allowing

other interested third parties to develop such businesses.

2.2.2.4 Methodology

We will adopt the standard computer science research methodology, starting with

the identification and formalization of the research questions and environment,

defining models of interest for solving various solutions, simulation of the models

and extraction of the results. We will produce a prototype that will allow easy in-

tegration of different infrastructure providers, automatic establishment of pricing

policies, automated negotiation of SLA parameters between the consumers and

the SaaS provider and between the provider and infrastructure owners. The pro-

totype will make transparent the deployment policy and the service management

during delivery.

We base our work on the following human resources: the principal investiga-

tor, two postdoctoral researchers - denoted as DR1 and DR2, and two master

graduates - denoted as MSC1 and MSC2.

We envisage the following activities:

A1. Identification and formalization of the SaaS provider environment, in-

cluding the identification of efficiency properties to be studied, the cost and the

computing endowments of various computing infrastructures to be considered as

cloud resources

A2. Defining the formal models for optimization of the efficiency properties

A3. Defining the agent model for the population of the deployed agents,

including the behaviors of CNAg(s), IOAg(s) and the PAg(s). Here, we include

the definition of the interaction protocol between the PAg(s) and the IOAg(s)

as a concurrent negotiation setup and the definition of the interactions between

the CNAg(s) and the IOAg(s) for transparent and autonomic cloud platform

management.

A4. Development of simulation experiments using various simulators for val-

idating the models of the efficiency properties

A5. Development of an agent solution for the envisaged agent model. We will

employ JADE(http://jade.tilab.com/) for agent development and deployment.

A6. Performing simulations with the models against various cloud ecosystem

properties and extracting the results

179

2.2 Research directions

A7. Implementation of a prototype, based on the conclusions extracted from

the previous simulations

A8. Validation of the prototype in real scenarios and extract results from

prototype validation

A9. Team management and results dissemination by writing papers to top

conferences, workshops and journals - this activity will take place all the three

years duration envisaged for the above-mentioned activities, for assuring timely

presentation of the scientific results

Assignment of the human resources on the activities will be as following:

• DR1 will work on optimization of the efficiency properties and implementa-

tions related to the inclusion of the desktop grids and peer-to-peer services

in the model

• DR2 will work on optimization of the efficiency properties and implemen-

tations related with risk management and task scheduling on private and

public clouds, P2P and grid resources. He will be strongly involved in A4

and A6, as he has extended experience with cloud simulators and in proto-

type implementation

• MSC1 will be involved in the design and implementation of the multi-agent

system, including the agent interaction protocols and the prototype imple-

mentation (A3 and A5)

• MSC2 will be involved with the implementations and deployment of the

cloud infrastructures and the implementation of the prototype

The research directions presented above will be developed part of the auto-

mated collaborative systems group in the Business Information Systems depart-

ment at Babeş-Bolyai University. The research group currently holds a HPC

cluster with 2 IBM M3 x3620 systems, each server with 2 Intel Xeon E5620 pro-

cessors, 32 Gb RAM and 1Tb Hdd. During 2012, the cluster will be extended

with another 2 IBM nodes, acquired from the center resources. The cluster runs

Eucalyptus, allowing for easy deployment of private clouds. The research team

will use this cluster for all the experiments. The research center will offer the

office for the research team members and all research infrastructure of the BBU,

including the library, will be available for the members usage.

180

References

Abdul-Rahman, A. and Hailes, S. (2000). Supporting trust in virtual communi-

ties. In HICSS ’00: Proceedings of the 33rd Hawaii International Conference

on System Sciences-Volume 6, page 6007. IEEE Computer Society. 30, 39, 60

Aberer, K. and Despotovic, Z. (2001). Managing trust in a peer-2-peer informa-

tion system. In CIKM ’01: Proceedings of the tenth international conference

on Information and knowledge management, pages 310–317. ACM Press. 58,

61

Adar, E. and Huberman, B. A. (2000). Free Riding on Gnutella. First Monday,

5(10). 10, 13, 126

Ahsant, M., Surridge, M., Leonard, T., Krishna, A., and Mulmo, O. (2006).

Dynamic trust federation in grids. In iTrust2006: Proceedings of the 4th Inter-

national Conference on Trust Management, volume 3986 of Lecture Notes in

Computer Science, pages 3–18. Springer. 31

Anderson, D. P. (2004). BOINC: A system for public-resource computing and

storage. In 5th Intl Workshop on Grid Computing (GRID 2004), 2004, USA,

Proceedings, pages 4–10. IEEE Computer Society. 21, 90, 93, 95

Anderson, D. P. and McLeod, J. (2007). Local scheduling for volunteer com-

puting. In 21th Intl. Parallel and Distributed Processing Symposium (IPDPS

2007), Proceedings, 2007, USA, pages 1–8. IEEE Computer Society. 90

Andrade, N., Brasileiro, F., Cirne, W., and Mowbray, M. (2007). Automatic grid

assembly by promoting collaboration in peer-to-peer grids. Journal of Parallel

Distributed Computing, 67(8):957–966. 23

181

REFERENCES

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,

Pruyne, J., Rofrano, J., Tuecke, S., and Xu, M. (2007). Web Services Agree-

ment Specification (WS-Agreement). In OGF Grid Resource Allocation Agree-

ment Protocol (GRAAP) WG. http://www.ggf.org/documents/GFD.107.pdf -

consulted on 13 July 2011. 3, 18, 125, 126, 131, 174

Araujo, F., Farinha, J., Domingues, P., Silaghi, G. C., and Kondo, D. (2011).

A maximum independent set approach for collusion detection in voting pools.

Journal of Parallel and Distributed Computing, 71(10):1356 – 1366. 5, 16, 89,

92, 121, 122

Arenas, A. E., Aziz, B., and Silaghi, G. C. (2010). Reputation management

in collaborative computing systems. Security and Communication Networks,

3(6):546–564. 4, 24

Artigas, M. S., Lopez, P. G., Ahullo, J. P., and Skarmeta, A. F. G. (2005).

Cyclone: A novel design schema for hierarchical dhts. In Proceedings of the

Fifth IEEE International Conference on Peer-to-Peer Computing, pages 49–

56. IEEE Computer Society. 10

Austin, D., Barbir, A., Ferris, C., and Garg, S. (2004). Web Services Architec-

ture Requirements. W3C Working Group. http://www.w3.org/TR/wsa-reqs/,

consulted on 21 April 2012. 17

Ausubel, L. and Deneckere, R. (1993). Efficient Sequential Bargaining. Review

of Economic Studies, 60(2):435–461. 126, 129, 141

Baarslag, T., Hindriks, K., Jonker, C. M., Kraus, S., and Lin, R. (2012). The First

Automated Negotiating Agents Competition (ANAC 2010). In New Trends in

Agent-based Complex Automated Negotiations, volume 383 of Studies in Com-

putational Intelligence. Springer. 149, 150

Barry, D. K. (2003). Web-services and service-oriented architectures: the savvy

manager’s guide. Morgan Kaufmann. 17

Beloglazov, A. and Buyya, R. (2010). Energy efficient resource management in

virtualized cloud data centers. In Proceedings of the 2010 10th IEEE/ACM

182

REFERENCES

International Conference on Cluster, Cloud and Grid Computing, pages 826–

831. IEEE Computer Society. 174

Birman, K. (2005). Reliable Distributed Systems: Technologies, Web Services,

and Applications. Springer. 17

Blasi, L., Arenas, A., Aziz, B., Mori, P., Rovati, U., Crispo, B., Martinelli, F.,

and Massonet, P. (2008). A secure environment for grid-based supply chains. In

Cunningham, P. and Cunningham, M., editors, eChallenges 2008 Conference,

Collaboration and the Knowledge Economy: Issues, Applications, Case Studies.

IOS Press. 24

Brandic, I., Music, D., and Dustdar, S. (2010). VieSLAF Framework: Facili-

tating Negotiations in Clouds by Applying Service Mediation and Negotiation

Bootstrapping . Scalable Computing: Practice and Experience, 11(2):189–204.

132

Britton, D., Cass, A., Clarke, P., Coles, J., Colling, D., Doyle, A., Geddes, N.,

Gordon, J., Jones, R., Kelsey, D., Lloyd, S., Middleton, R., Patrick, G., San-

sum, R., and Pearce, S. (2009). GridPP: the UK grid for particle physics.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 367(1897):2447–2457. 24

Buchegger, S. and Boudec, J. L. (2005). Self-Policing Mobile Ad-Hoc Networks

by Reputation. IEEE Communication Magazine, 43(7):101–107. 31

Buyya, R., Yeo, C. S., and Venugopal, S. (2008). Market-oriented cloud comput-

ing: Vision, hype, and reality for delivering it services as computing utilities.

In 10th IEEE International Conference on High Performance Computing and

Communications, pages 5–13. IEEE Press. 171

Camarihna-Matos, L. M. and Afsarmanesh, H. (2003). Elements of a base ve

infrastructure. Journal of Computers in Industry, 51(2):139–163. 68

Canon, L.-C., Jeannot, E., and Weissman, J. (2010). A dynamic approach for

characterizing collusion in desktop grids. In 2010 IEEE International Sympo-

sium on Parallel Distributed Processing (IPDPS), pages 1 –12. IEEE Press. 4,

89, 91, 94

183

REFERENCES

Canon, L.-C., Jeannot, E., and Weissman, J. (2011). A scheduling and certi-

fication algorithm for defeating collusion in desktop grids. In International

Conference on Distributed Computing Systems, pages 343–352. IEEE Press. 4,

91, 94

Cappello, F., Djilali, S., Fedak, G., Hérault, T., Magniette, F., Néri, V.,

and Lodygensky, O. (2005). Computing on large-scale distributed systems:

XtremWeb architecture, programming models, security, tests and convergence

with grid. Future Generation Computer Systems, 21(3):417–437. 21, 90, 95

Chang, I., Shao, W.-Z., and Teh, H.-H. (1988). Heuristic solutions for the gen-

eral maximum independent set problem with applications to expert system

design. In Twelfth International Computer Software and Applications Confe-

rence, COMPSAC 88., pages 451–455. IEEE Press. 122

Cheng, W.-K., Ooi, B.-Y., and Chan, H.-Y. (2010). Resource Federation in Grid

Using Automated Intelligent Agent Negotiation. Future Generation Computer

Systems, 26(8):1116 – 1126. 127, 132

Chien, A., Calder, B., Elbert, S., and Bhatia, K. (2003). Entropia: architecture

and performance of an enterprise desktop grid system. Journal of Parallel and

Distributed Computing, 63(5):597 – 610. 21

Choi, S. and Buyya, R. (2010). Group-based adaptive result certification mecha-

nism in desktop grids. Future Generation Computer Systems, 26(5):776 – 786.

93, 94

Chrabakh, W. and Wolski, R. (2006). GridSAT: a system for solving satisfiability

problems using a computational grid. Parallel Computing, 32(9):660–687. 21

Chu, Y.-h., Chuang, J., and Zhang, H. (2004). A case for taxation in peer-to-

peer streaming broadcast. In Proceedings of the ACM SIGCOMM workshop on

Practice and theory of incentives in networked systems, pages 205–212. ACM

Press. 14

Ciccarelli, G. and Lo Cigno, R. (2011). Collusion in peer-to-peer systems. Com-

puter Networks, 55(15):3517–3532. 7

184

REFERENCES

Clark, K., Oey, M., Warnier, M., and Brazier, F. (2009). WS-Agreement Negotia-

tion Perspective - draft version 2. In OGF Grid Resource Allocation Agreement

Protocol (GRAAP) WG. http://forge.ggf.org/sf/go/doc15817?nav=1.32 - con-

sulted on 13 July 2011. 126, 131

Cohen, B. (2003). Incentives Build Robustness in BitTorrent.

http://www.bittorrent.org/bittorrentecon.pdf - consulted on 13 July 2011. 13,

126

CoreGrid (2005). D.IA.03 Survey Material on Trust and Security. Technical

Report D.IA.03, CoreGrid. 26, 27, 30

Costa, F., Silva, L., Fedak, G., and Kelley, I. (2008). Optimizing data distribution

in desktop grid platforms. Parallel Processing Letters, 18(3):391–410. 90

Das, R., Whalley, I., and Kephart, J. O. (2006). Utility-based collaboration

among autonomous agents for resource allocation in data centers. In Pro-

ceedings of the fifth international joint conference on Autonomous agents and

multiagent systems, pages 1572–1579. ACM Press. 175

Dearden, R., Friedman, N., and Russel, S. (1998). Bayesian Q-Learning. In Pro-

ceedings of the Fifteenth National Conference on Artificial Intelligence, pages

761–768. 134

DeFanti, T. A., Foster, I., Papka, M. E., Stevens, R., and Kuhfuss, T. (1996).

Overview of the i-way: Wide-area visual supercomputing. International Jour-

nal of High Performance Computing Applications, 10(2-3):123–131. 19

Dellarocas, C. (2005). Reputation mechanism design in online trading environ-

ments with pure moral hazard. Information Systems Research, 16(2):209–230.

27

Dellarocas, C. (2006). How often should reputation mechanisms update a trader’s

reputation profile? Information Systems Research, 17(3). 37

Despotovic, Z. and Aberer, K. (2005). Probabilistic prediction of peers’ per-

formance in p2p networks. Engineering Applications of Artificial Intelligence,

18(3):771–780. 31, 40, 45, 61

185

REFERENCES

Deutch, M. (1962). Cooperation and trust: Some theoretical notes. In Nebraska

Symposium on Motivation, pages 275–319. Nebraska University Press. 29

Di Stefano, A., Morana, G., and Zito, D. (2009). A P2P Strategy for QoS Discov-

ery and SLA Negotiation in Grid Environment. Future Generation Computer

Systems, 25(8):862 – 875. 132

Domingues, P., Sousa, B., and Silva, L. M. (2007). Sabotage-tolerance and trust

management in desktop grid computing. Future Generation Computer Systems,

23(7):904–912. 20, 90, 94, 123

Douceur, J. R. (2002). The Sybil Attack. In Peer-to-Peer Systems, First In-

ternational Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002,

Revised Papers, volume 2429 of Lecture Notes in Computer Science, pages 251–

260. Springer. 15, 91

Du, W., Jia, J., Mangal, M., and Murugesan, M. (2004). Uncheatable grid com-

puting. In 24th International Conference on Distributed Computing Systems,

2004. Proceedings., pages 4 – 11. IEEE Press. 93

Falcone, R. and Castelfranci, C. (2001). Social trust: A cognitive approach.

In Castelfranchi, C. and Tan, Y.-H., editors, Trust and Deception in Virtual

Societibes, pages 55–90. Kluwer Academic Publishers. 29

Faratin, P., Sierra, C., and Jennings, N. (2002). Using Similarity Criteria to Make

Issue Trade-offs in Automated Negotiations. Artificial Intelligence, 142(2):205–

237. 134, 136, 138, 139, 146

Faratin, P., Sierra, C., and Jennings, N. R. (1998). Negotiation Decision Functions

for Autonomous Agents. Robotics and Autonomous Systems, 24:159–182. 133

Fedak, G., He, H., and Cappello, F. (2008). Bitdew: a programmable environment

for large-scale data management and distribution. In SC ’08: Proceedings of

the 2008 ACM/IEEE conference on Supercomputing, pages 1–12. IEEE Press.

22, 23, 90

Feldman, M., Papadimitriou, C., Chuang, J., and Stoica, I. (2004). Free-riding

and whitewashing in peer-to-peer systems. In Proceedings of the ACM SIG-

186

REFERENCES

COMM workshop on Practice and theory of incentives in networked systems,

pages 228–236. ACM Press. 16

Fernandez, A., Lopez, L., Santos, A., and Georgiou, C. (2006). Reliably executing

tasks in the presence of untrusted entities. In 25th IEEE Symposium on Reliable

Distributed Systems, SRDS ’06., pages 39 –50. IEEE Press. 95

Figueroa, C., Figueroa, N., Jofre, A., Sahai, A., Chen, Y., and Iyer,

S. (2008). A Game Theoretic Framework for SLA Negotiation. Tech-

nical report, Enterprise Systems Storage Laboratory, HP Laboratories.

http://www.hpl.hp.com/techreports/2008/HPL-2008-5.pdf, consulted on 5

August 2011. 127, 133

Fisk, A. (2003). Gnutella Dynamic Query Protocol v0.1.

http://limewire.negatis.com/index.php?title=Dynamic Querying. 11

Fito, J., Macias, M., and Guitart, J. (2010). Toward business-driven risk man-

agement for cloud computing. In 2010 International Conference on Network

and Service Management (CNSM), pages 238–241. IEEE Press. 176

Fletcher, G., Sheth, H., and Brner, K. (2005). Unstructured peer-to-peer net-

works: Topological properties and search performance. In Agents and Peer-

to-Peer Computing, volume 3601 of Lecture Notes in Computer Science, pages

14–27. Springer. 11

Foster, I. and Iamnitchi, A. (2003). On death, taxes, and the convergence of

peer-to-peer and grid computing. In Kaashoek, F and Stoica, I, editor, Peer-

to-Peer Systems II, 2nd International Workshop on Peer-to-Peer Systems,, vol-

ume 2735 of Lecture Notes in Computer Science, pages 118–128. Springer. 2

Foster, I., Kesselman, C., and Tuecke, S. (2001). The anatomy of the grid:

Enabling scalable virtual organizations. International Journal of High Perfor-

mance Computing Applications, 15(3):200–222. 20, 25, 26, 65

Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., and Grimshaw, A.

(2005). The open grid services architecture, version 1.0. Technical Report GFD-

I.030, GGF. http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf,

consulted on 10 January 2012. 31

187

REFERENCES

Friedman, E. J. and Resnick, P. (2001). The social cost of cheap pseudonyms.

Journal of Economics and Management Strategy, 10(2):173–199. 16

Fudenberg, D. and Levine, K. (1992). Maintaining a reputation when strategies

are imperfectly observed. Review of Economic Studies, 59(3):561–579. 36

Fudenberg, D. and Tirole, J. (1991). Game Theory. MIT Press. 15, 36

Fullam, K. and Barber, K. (2006). Learning trust strategies in reputation ex-

change networks. In AAMAS ’06: Proceedings of the fifth international joint

conference on Autonomous agents and multiagent systems, pages 1241–1248.

ACM Press. 51, 61

Fullam, K., Klos, T., Muller, G., Sabater, J., Schlosser, A., Topol, Z., Barber, K.,

Rosenschein, J., Vercouter, L., and Voss, M. (2004). The Agent Reputation

and Trust (ART) Testbed Competition Game Rules (version 1.0). Technical

Report TR2004-UT-LIPS-028, The University of Texas at Austin. 50

Fullam, K., Klos, T., Muller, G., Sabater, J., Topol, Z., Barber, K., Rosenscheim,

J., and Vercouter, L. (2005). The agent reputation and trust (art) testbed

architecture. In Frontiers in Artificial Intelligence and Applications, volume

131, pages 389–396. IOS Press. 50

Gambetta, D. (1988). Trust: Making and Breaking Cooperative Relations, chapter

Can We Trust Trust?, pages 213–237. Department of Sociology, University of

Oxford. 28, 29

Garcia-Molina, H. and Crespo, A. (2003). Semantic overlay net-

works for p2p systems. Technical Report 2003-75, Stanford InfoLab.

http://ilpubs.stanford.edu:8090/627/. 11

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman. 122

Georgakopoulos, D. and Papazoglou, M. (2009). Service-Oriented Computing.

MIT Press. 17

188

REFERENCES

Gode, D. K. and Shyam, S. (1993). Allocative Efficiency of Markets with Zero-

intelligence Traders: Market as a Partial Substitute for Individual Rationality.

The Journal of Political Economy, 101(1):119–137. 134, 135

Goel, S., Talya, S. S., and Sobolewski, M. (2007). Service-based p2p overlay net-

work for collaborative problem solving. Decission Support Systems, 43(2):547–

568. 19

Goiri, I., Berral, J. L., Fito, J. O., Julir, F., Nou, R., Guitart, J., Gavaldr, R., and

Torres, J. (2012). Energy-efficient and multifaceted resource management for

profit-driven virtualized data centers. Future Generation Computer Systems,

28(5):718 – 731. 175

Golle, P. and Mironov, I. (2001). Uncheatable distributed computations. In Nac-

cache, D., editor, Topics in Cryptology CT-RSA 2001, volume 2020 of Lecture

Notes in Computer Science, pages 425–440. Springer Berlin / Heidelberg. 93

Gong, L. (2001). Jxta: A network programming environment. IEEE Internet

Computing, 5(3):88–95. 19, 22

Gorgone, J., Gray, P., Stohr, E., Valacich, J., and Wigand, R. (2006). MSIS 2006:

Model Curriculum and guidelines for graduate degree programs in Information

Systems. Communications of AIS, 38:121–196. 159, 163, 164

Grandison, T. and Sloman, M. (2000). A Survey of Trust in Internet Applications.

IEEE Communications Surveys and Tutorials, 3(4). 26, 27, 29

Guha, S., Rastogi, R., and Shim, K. (1999). Rock: A robust clustering algorithm

for categorical attributes. In 15th International Conference on Data Engineer-

ing, pages 512–521. IEEE Computer Society. 119

Gupta, M., Judge, P., and Ammar, M. (2003). A reputation system for peer-

to-peer networks. In NOSSDAV ’03: Proceedings of the 13th international

workshop on Network and operating systems support for digital audio and video,

pages 144–152. ACM Press. 31, 53, 54, 55, 61, 67

Habib, A. and Chuang, J. (2004). Incentive mechanism for peer-to-peer media

streaming. In 12th IEEE International Workshop on Quality of Service, pages

171 – 180. IEEE Press. 14

189

REFERENCES

Habib, S., Ries, S., and Muhlhauser, M. (2011). Towards a trust management

system for cloud computing. In 2011 IEEE 10th International Conference on

Trust, Security and Privacy in Computing and Communications (TrustCom),

pages 933–939. IEEE Press. 176

Haque, A., Alhashmi, S. M., and Parthiban, R. (2011). A Survey of Economic

Models in Grid Computing. Future Generation Computer Systems, 27(8):1056

– 1069. 133

Hindriks, K., Jonker, C. M., Kraus, S., Lin, R., and Tykhonov, D. (2009). Ge-

nius: Negotiation Environment for Heterogeneous Agents. In AAMAS ’09:

Proceedings of The 8th International Conference on Autonomous Agents and

Multiagent Systems, pages 1397–1398. IFAAMAS. 134, 146

Hindriks, K. and Tykhonov, D. (2008). Opponent Modelling in Automated Multi-

issue Negotiation Using Bayesian Learning. In AAMAS ’08: Proceedings of

the 7th International Joint Conference on Autonomous Agents and Multiagent

Systems. 125, 127, 134, 135, 136, 137, 138, 146

Huynh, T., Jennings, N. R., and Shadbolt, N. (2006). An integrated trust and

reputation model for open multi-agent systems. Autonomous Agents and Multi-

Agent Systems, 13(2):119–154. 44, 45, 49, 60, 67, 73

IFIP Working Group 10.4 (1988). Charter of WG 10.4 Dependable Computing

and Fault Tolerance. 3

Irwin, D., Grit, L., and Chase, J. (2004). Balancing risk and reward in a market-

based task service. In 13th IEEE International Symposium on High perfor-

mance Distributed Computing, pages 160 – 169. IEEE Press. 176

Ito, T., Zhang, M., Robu, V., Fatima, S., and Matsuo, T. (2012). New Trends

in Agent-based Complex Automated Negotiations. Studies in Computational

Intelligence. Springer. 151

Jain, M., Lal, S., and Mathuria, A. (2008). A survey of peer-

to-peer micropayment schemes. Technical report, DA-IICT.

http://www.dgp.toronto.edu/m̃jain/P2P Micropayment-2008.pdf consulted

on 19 April 2012. 14

190

REFERENCES

Jian, L. (2008). An Agent Bilateral Multi-issue Alternate Bidding Negotiation

Protocol Based on Reinforcement Learning and its Application in E-commerce.

In ISECS ’08: Proceedings of the 2008 International Symposium on Electronic

Commerce and Security, pages 217–220. IEEE Computer Society. 134

Jones, S. and Morris, P. (1999). TRUST-EC: requirements for Trust and Confi-

dence in E-Commerce. Technical Report EUR 18749 EN, European Commis-

sion Joint Research Centre. 29

Jonker, C. M., Robu, V., and Treur, J. (2007). An Agent Architecture for Multi-

attribute Negotiation Using Incomplete Preference Information. Autonomous

Agents and Multi-Agent Systems, 15(2):221–252. 134, 135, 138, 146

Jonker, C. M. and Treur, J. (2001). An Agent Architecture for Multi-Attribute

Negotiation. In IJCAI’01: Proceedings of the 17th International Joint Confe-

rence on Artificial Intelligence, pages 1195–1201. Morgan Kaufmann. 134

Jøsang, A. (1999). An algebra for assessing trust in certification chains. In

Proceedings of the Network and Distributed System Security Symposium, NDSS

1999, San Diego, California, USA. The Internet Society. 43, 60, 67

Jøsang, A., Ismail, R., and Boyd, C. (2007). A survey of trust and reputation

systems for online service provision. Decision Support Systems, 43(2):618 –

644. 26, 27, 29, 30, 38

Jøsang, A. and Knapskog, S. (1998). A metric for trusted systems. In Proceedings

of the 21st National Information Systems Security Conference, (NIST-NCSC

1998). 42

Jurca, R. and Faltings, B. (2003). An incentive compatible reputation mechanism.

In 2003 IEEE International Conference on E-Commerce Technology, page 285.

IEEE Computer Society. 61, 67

Jurca, R. and Faltings, B. (2005a). Reputation-based pricing of p2p services. In

P2PECON ’05: Proceeding of the 2005 ACM SIGCOMM workshop on Eco-

nomics of peer-to-peer systems, pages 144–149. ACM Press. 31, 63

191

REFERENCES

Jurca, R. and Faltings, B. (2005b). Reputation-based service level agreements for

web services. In Benatallah, B., Casati, F., and Traverso, P., editors, Service-

Oriented Computing - ICSOC 2005, volume 3826 of Lecture Notes in Computer

Science, pages 396–409. Springer. 31, 63, 67

Kaashoek, M. F. and Karger, D. R. (2003). Koorde: A Simple Degree-Optimal

Distributed Hash Table. In Proceedings of the IPTPS 2003, pages 98–107. 10

Kafali, O. and Yolum, P. (2006). Trust strategies for art testbed. In The workshop

Trust in Agent Societies at AAMAS 2006. 51, 61

Kamvar, S., Schlosser, M., and Garcia-Molina, H. (2003). The eigentrust algo-

rithm for reputation management in p2p networks. In WWW ’03: Proceedings

of the 12th international conference on World Wide Web, pages 640–651. ACM

Press. 15, 31, 55, 56, 60, 64, 65, 66, 106, 107, 118

Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes,

Second Edition. Academic Press. 103

Kelley, I. and Taylor, I. (2008). Bridging the data management gap between

service and desktop grids. In Distributed and Parallel Systems, pages 13–26.

Springer US. 23

Kerschbaum, F., Haller, J., Karabulut, Y., and Robinson, P. (2006). Pathtrust:

A trust-based reputation service for virtual organization formation. In

iTrust2006: Proceedings of the 4th International Conference on Trust Man-

agement, volume 3986 of Lecture Notes in Computer Science, pages 193–205.

Springer. 31, 60, 65

Kim, J.-S., Nam, B., Marsh, M. A., Keleher, P. J., Bhattacharjee, B., Richardson,

D., Wellnitz, D., and Sussman, A. (2007). Creating a robust desktop grid

using peer-to-peer services. In 21th Intl. Parallel and Distributed Processing

Symposium (IPDPS 2007), Proceedings, 2007, USA. IEEE. 90

Kliazovich, D., Bouvry, P., and Khan, S. (2010). Greencloud: a packet-level

simulator of energy-aware cloud computing data centers. The Journal of Su-

percomputing, page onlie first. 175

192

REFERENCES

Kondo, D., Araujo, F., Malecot, P., Domingues, P., Silva, L. M., Fedak, G., and

Cappello, F. (2007). Characterizing result errors in internet desktop grids. In

Euro-Par 2007, Parallel Processing, 13th International Euro-Par Conference,

France, 2007, Proceedings, volume 4641 of LNCS, pages 361–371. Springer. 90,

92, 93, 97, 98, 100

Kreps, D. and Wilson, R. (1982). Reputation and imperfect information. Journal

of Economic Theory, 27(2):253–279. 36

Kreps, D. M. (1990). A course in microeconomic theory. Princeton University

Press. 14

Krishnan, R., Smith, M. D., and Telang, R. (2006). The economics of peer-to-peer

networks. Journal of Information Technology Theory and Application, 5(3). 19

Lai, K., Rasmusson, L., Adar, E., Zhang, L., and Huberman, B. A. (2005).

Tycoon: An implementation of a distributed, market-based resource allocation

system. Multiagent and Grid Systems, 1(3):169–182. 14

Lamanna, D. D., Skene, J., and Emmerich, W. (2003). Slang: A language for

defining service level agreements. In Proceedings of the The Ninth IEEE Work-

shop on Future Trends of Distributed Computing Systems, pages 100–106. IEEE

Computer Society. 19

Lamport, L., Shostak, R., and Pease, M. (1982). The byzantine generals problem.

ACM Transactions on Programming Languages and Systems, 4:382–401. 95

Lang, F. (2005). Developing Dynamic Strategies for Multi-Issue Automated Con-

tracting in the Agent Based Commercial Grid. In IEEE International Sym-

posium on Cluster Computing and the Grid, pages 342–349. IEEE Computer

Society. 127, 133, 141

Lawley, R., Luck, M., Decker, K., Payne, T. R., and Moreau, L. (2003). Auto-

mated Negotiation Between Publishers and Consumers of Grid Notifications.

Parallel Processing Letters, 13(4):537–548. 127

Lee, Y. and Zomaya, A. (2012). Energy efficient utilization of resources in cloud

computing systems. The Journal of Supercomputing, 60(2):268–280. 175

193

REFERENCES

Legrand, A., Marchal, L., and Casanova, H. (2003). Scheduling Distributed Ap-

plications: the SimGrid Simulation Framework. In CCGRID ’03: Proc. of

the 3st International Symposium on Cluster Computing and the Grid, pages

138–145. IEEE Computer Society. 82

Li, C. and Li, L. (2004). Competitive Proportional Resource Allocation Policy

for Computational Grid. Future Generation Computer Systems, 20(6):1041 –

1054. 127

Li, J., Chinneck, J., Woodside, M., and Litoiu, M. (2009). Fast scalable optimiza-

tion to configure service systems having cost and quality of service constraints.

In Proceedings of the 6th international conference on Autonomic computing,

ICAC ’09, pages 159–168. ACM Press. 175

Li, J., Sim, K. M., and Yahyapour, R. (2007). Negotiation Strategies Considering

Opportunity Functions for Grid Scheduling. In Kermarrec, AM and Bouge, L

and Priol, T, editor, Euro-Par 2007 Parallel Processing, Proceedings, volume

4641 of Lecture Notes in Computer Science, pages 447–456. Springer. 127, 133

Li, J. and Yahyapour, R. (2006). A Strategic Negotiation Model for Grid Schedul-

ing. International Transactions on Systems Science and Applications, 1(4):411–

420. 127, 132, 141

Li, Y.-M. and Lee, Y.-L. (2010). Pricing peer-produced services: Quality, ca-

pacity, and competition issues. European Journal of Operational Research,

207(3):1658 – 1668. 20

Lim, S.-H., Sharma, B., Nam, G., Kim, E. K., and Das, C. (2009). MDCSim: A

multi-tier data center simulation, platform. In IEEE International Conference

on Cluster Computing and Workshops, 2009. CLUSTER ’09, pages 1–9. IEEE

Press. 176

Litoiu, M. and Litoiu, M. (2010). Optimizing resources in cloud, a soa governance

view. In Proceedings of the 2010 Workshop on Governance of Technology,

Information and Policies, pages 71–75. ACM. 174

194

REFERENCES

Lopes, F., Mamede, N., Novais, A., and Coelho, H. (2004). Negotiation Strategies

for Autonomous Computational Agents. In ECAI 2004: Proceedings of the 16th

European Conference on Artificial Intelligence, pages 38–42. IOS Press. 134

Ludwig, H., Keller, A., Dan, A., King, R. P., and Franck, R. (2003). Web

Service Level Agreement (WSLA) Language Specification. IBM Corporation.

http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf consulted on

23 April 2012. 19

Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. (2002). Search and replication

in unstructured peer-to-peer networks. In Proceedings of the 16th international

conference on Supercomputing, pages 84–95. ACM Press. 11

MacQueen, J. B. (1967). Some methods for classification and analysis of multi-

variate observations. In Cam, L. M. L. and Neyman, J., editors, Proc. of the

5th Berkeley Symposium on Mathematical Statistics and Probability, volume 1,

pages 281–297. University of California Press. 91, 119

Manchala, D. (2000). E-commerce trust metrics and models. IEEE Internet

Computing, 4(2):36–44. 27

Marozzo, F., Talia, D., and Trunfio, P. (2011). P2p-mapreduce: Parallel data

processing in dynamic cloud environments. Journal of Computer and System

Sciences. 22

Marsh, S. (1994). Formalizing Trust as a Computational Concept. PhD thesis,

University of Stirling. 29, 42

Marzolla, M., Mordacchini, M., and Orlando, S. (2007). Peer-to-peer systems for

discovering resources in a dynamic grid. Parallel Computing, 33(4-5):339–358.

12

Mastroianni, C., Talia, D., and Verta, O. (2005). A super-peer model for resource

discovery services in large-scale Grids. Future Generation Computer Systems,

21(8):1235 – 1248. 12

Maurer, M., Brandic, I., Emeakaroha, V. C., and Dustdar, S. (2010). Towards

knowledge management in self-adaptable clouds. In Proceedings of the 2010 6th

195

REFERENCES

World Congress on Services, SERVICES ’10, pages 527–534. IEEE Computer

Society. 175

Maymounkov, P. and Mazieres, D. (2002). Kademlia: A peer-to-peer information

system based on the xor metric. In Peer-to-Peer Systems, volume 2429 of

Lecture Notes in Computer Science, pages 53–65. Springer Berlin / Heidelberg.

9

Meshkova, E., Riihijärvi, J., Petrova, M., and Mähönen, P. (2008). A survey on

resource discovery mechanisms, peer-to-peer and service discovery frameworks.

Computer Networks, 52(11):2097–2128. 7

Miller, C., Butler, P., Shah, A., and Butt, A. R. (2007). Peerstripe: a p2p-based

large-file storage for desktop grids. In Proceedings of the 16th international

symposium on High performance distributed computing, pages 221–222. ACM

Press. 23

Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard,

B., Rollins, S., and Xu, Z. (2003). Peer-to-peer computing. Technical Report

HPL-2002-5, HP Laboratories Palo Alto. 6

Moca, M. (2010). Issues towards Automated Collaboration in Distributed Com-

puting in Business. Risoprint. viii, 9

Moca, M., Silaghi, G. C., and Fedak, G. (2011). Distributed Results Checking for

MapReduce in Volunteer Computing. In 2011 IEEE International Symposium

on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),

pages 1847–1854. IEEE Press. 95

Montresor, A. and Abeni, L. (2011). Cloudy weather for p2p, with a chance of

gossip. In 2011 IEEE International Conference on Peer-to-Peer Computing

(P2P), pages 250–259. IEEE Press. 177

Moon, H. J., Chi, Y., and Hacigümüs, H. (2010). Sla-aware profit optimization

in cloud services via resource scheduling. In Proceedings of the 2010 6th World

Congress on Services, pages 152–153. IEEE Computer Society. 175

Mowbray, M. (2007). How web community organisation can help grid computing.

International Journal of Web Based Communities, 3(1):44–54. 21, 23

196

REFERENCES

Newmarch, J. (2006). Foundations of Jini 2 Programming. Apress. 19

Nguyen, T. D. and Jennings, N. R. (2003). A Heuristic Model for Concurrent

Bi-lateral Negotiations in Incomplete Information Settings. In IJCAI’03: Pro-

ceedings of the 18th International Joint Conference on Artificial Intelligence,

pages 1467–1469. Morgan Kaufmann. 133

Palomar, E., Estevez-Tapiador, J., Hernandez-Castro, J., and Ribagorda, A.

(2006). Security in p2p networks: Survey and research directions. In Emerg-

ing Directions in Embedded and Ubiquitous Computing, volume 4097 of Lecture

Notes in Computer Science, pages 183–192. Springer Berlin / Heidelberg. 7

Paschke, A. (2005). Rbsla a declarative rule-based service level agreement lan-

guage based on ruleml. In International Conference on Computational Intel-

ligence for Modelling, Control and Automation, 2005 and International Con-

ference on Intelligent Agents, Web Technologies and Internet Commerce, vol-

ume 2, pages 308–314. IEEE Press. 19

Paton, N. W., Aragão, M. A. T., Lee, K., Fernandes, A. A. A., and Sakellariou,

R. (2009). Optimizing utility in cloud computing through autonomic workload

execution. IEEE Data Engineering Bulletin, 32(1):51–58. 175

Petri, I., Rana, O. F., and Silaghi, G. C. (2011). Service level agreement as a

complementary currency in peer-to-peer markets. Future Generation Computer

Systems. 14

Pichot, A., Waeldrich, O., Ziegler, W., and Wieder, P. (2009). Towards Dynamic

Service Level Agreement Negotiation: an Approach Based on WS-Agreement.

In Web Information Systems and Technologies, volume 18 of Lecture Notes in

Business Information Processing, pages 107–119. Springer. 125, 127

Popovici, F. I. and Wilkes, J. (2005). Profitable services in an uncertain world.

In Proceedings of the 2005 ACM/IEEE conference on Supercomputing, SC ’05.

IEEE Computer Society. 176

Puppin, D., Moncelli, S., Baraglia, R., Tonellotto, N., and Silvestri, F. (2005).

A grid information service based on peer-to-peer. In Euro-Par 2005 Parallel

197

REFERENCES

Processing, volume 3648 of Lecture Notes in Computer Science, pages 613–613.

Springer Berlin / Heidelberg. 12

Raeesy, Z., Brzostowski, J., and Kowalczyk, R. (2007). Towards a Fuzzy-Based

Model for Human-like Multi-Agent Negotiation. In Proceedings of the 2007

IEEE/WIC/ACM International Conference on Intelligent Agent Technology,

pages 515–519. IEEE Computer Society. 134

Ramchurn, S., Huynh, D., and Jennings, N. (2004a). Trust in multi-agent sys-

tems. Knowledge Engineering Review, 19(1):1–25. 28, 30

Ramchurn, S., Jennings, N., Sierra, C., and Godo, L. (2004b). Devising a trust

model for multi-agent interactions using confidence and reputation. Applied

Artificial Intelligence, 18(9-10):833–852. 47, 50, 52, 61, 67, 73

Ranjan, R. and Zhao, L. (2011). Peer-to-peer service provisioning in cloud com-

puting environments. The Journal of Supercomputing, page online first. 175

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. (2001). A

scalable content-addressable network. SIGCOMM Computer Communication

Review, 31:161–172. 8

Rebahi, Y., Mujica, V., and Sisalem, D. (2005). A reputation-based trust mech-

anism for ad hoc networks. In ISCC ’05: Proceedings of the 10th IEEE Sym-

posium on Computers and Communications (ISCC’05), pages 37–42. IEEE

Computer Society. 31

Resende, M. G. C., Feo, T. A., and Smith, S. H. (1998). Algorithm 787: Fortran

subroutines for approximate solution of maximum independent set problems

using grasp. ACM Transactions on Mathematical Software, 24:386–394. 122

Resnick, P., Kuwabara, K., Zeckhauser, R., and Friedman, E. (2000). Reputation

systems. Communications of ACM, 43(12):45–48. 27

Resnick, P. and Zeckhauser, R. (2002). Advances in Applied Microeconomics,

volume 11, chapter Trust Among Strangers in Internet Transactions: Empirical

Analysis of eBay’s Reputation System. Elsevier. 37, 48

198

REFERENCES

Resnick, P., Zeckhauser, R., Swanson, J., and Lockwood, K. (2006). The value

of reputation on ebay: A controlled experiment. Experimental Economics,

9(2):79–101. 38

Risson, J. and Moors, T. (2006). Survey of research towards robust peer-to-peer

networks: search methods. Computer Networks, 50(17):3485–3521. 7

Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I. M.,

Montero, R., Wolfsthal, Y., Elmroth, E., Cáceres, J., Ben-Yehuda, M., Em-

merich, W., and Galán, F. (2009). The RESERVOIR model and architecture

for open federated cloud computing. IBM Journal of Research and Develop-

ment, 53(4):535–545. 174

Rodero-Merino, L., Anta, A. F., López, L., and Cholvi, V. (2009). Self-managed

topologies in p2p networks. Computer Networks, 53(10):1722–1736. 11

Rosen, M., Lublinsky, B., Smith, K. T., and Balcer, M. J. (2008). Applied SOA:

Service-Oriented Architecture and Design Strategies. Wiley. 18

Rowstron, A. I. T. and Druschel, P. (2001). Pastry: Scalable, decentralized

object location, and routing for large-scale peer-to-peer systems. In Proceedings

of the IFIP/ACM International Conference on Distributed Systems Platforms

Heidelberg, pages 329–350. Springer-Verlag. 9

Rubach, P. and Sobolewski, M. (2009). Dynamic SLA Negotiation in Autonomic

Federated Environments. In Meersman, R., Herrero, P., and Dillon, T., editors,

On the Move to Meaningful Internet Systems: OTM 2009 Workshops, volume

5872 of Lecture Notes in Computer Science, pages 248–258. Springer Berlin /

Heidelberg. 132

Sabater, J. and Sierra, C. (2001). REGRET: A Reputation Model for Gregar-

ious Societies. In Fourth Workshop on Deception, Fraud and Trust in Agent

Societies, pages 194–195. ACM Press. 45, 47, 48, 50, 52, 61, 67, 73

Sabater, J. and Sierra, C. (2005). Review on computational trust and reputation

models. Artificial Intelligence Review, 24(1):33–60. 28, 30

199

REFERENCES

Saito, K. (2006). i-WAT: The Internet WAT System – An Architecture for

Maintaining Trust and Facilitating Peer-to-Peer Barter Relationships. PhD

thesis, Keio University. 14

Salehi, M. A. and Buyya, R. (2010). Adapting market-oriented scheduling policies

for cloud computing. In Proceedings of the 10th international conference on

Algorithms and Architectures for Parallel Processing - Volume Part I, volume

6081 of Lecture Notes in Computer Science, pages 351–362, Berlin, Heidelberg.

Springer-Verlag. 174

Sarmenta, L. F. and Hirano, S. (1999). Bayanihan: building and studying web-

based volunteer computing systems using java. Future Generation Computer

Systems, 15(56):675 – 686. 21

Sarmenta, L. F. G. (2002). Sabotage-tolerance mechanisms for volunteer com-

puting systems. Future Generation Computer Systems, 18(4):561–572. 91, 93,

96, 117

Schulz, S., Blochinger, W., Held, M., and Dangelmayr, C. (2008). COHESION

A microkernel based Desktop Grid platform for irregular task-parallel applica-

tions. Future Generation Computer Systems, 24(5):354 – 370. 22

Sedaghat, M., Hernández, F., and Elmroth, E. (2011). Unifying cloud manage-

ment: Towards overall governance of business level objectives. In Proceedings

of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing, pages 591–597. IEEE Computer Society. 174

Sen, S., Goswami, I., and Airiau, S. (2006). Expertise and trust-based formation

of effective coalitions: an evaluation of art testbed. In The workshop Trust in

Agent Societies at AAMAS 2006. 51, 52

Sharma, R. K., Bash, C. E., Patel, C. D., Friedrich, R. J., and Chase, J. S.

(2005). Balance of power: Dynamic thermal management for internet data

centers. IEEE Internet Computing, 9(1):42–49. 174

Sherwood, R., Seungjoon, L., and Bhattacharjee, B. (2006). Cooperative peer

groups in nice. Computer Networks, 50(4):523–544. 45, 59, 65, 66, 67

200

REFERENCES

Siddiqui, M., Villazón, A., and Fahringer, T. (2006). Grid Capacity Planning with

Negotiation-based Advance Reservation for Optimized QoS. In Proceedings of

the 2006 ACM/IEEE conference on Supercomputing. ACM. 127, 133

Silaghi, G. C., Araujo, F., Silva, L., Domingues, P., and Arenas, A. (2008a).

Defeating colluding nodes in desktop grid computing platforms. In IEEE In-

ternational Symposium on Parallel and Distributed Processing, 2008. IPDPS

2008., pages 1 –8. IEEE Press. 4, 89, 91

Silaghi, G. C., Araujo, F., Silva, L., Domingues, P., and Arenas, A. (2009).

Defeating colluding nodes in desktop grid computing platforms. Journal of

Grid Computing, 7:555–573. 4, 89, 91, 94, 123, 176

Silaghi, G. C., Arenas, A., and Silva, L. (2007a). Reputation-based trust manage-

ment systems and their applicability to grids. Technical Report TR-0064, In-

stitutes on Knowledge and Data Management and System Architecture, Core-

GRID - Network of Excellence. 4

Silaghi, G. C., Arenas, A. E., and Silva, L. M. (2007b). A utility-based reputation

model for service-oriented computing. In Priol, T. and Vanneschi, M., editors,

Towards Next Generation Grids, pages 63–72. Springer US. 4, 18, 24, 25, 69

Silaghi, G. C., Serban, L. D., and Litan, C. M. (2010). A Framework for Building

Intelligent SLA Negotiation Strategies under Time Constraints. In Altmann,

J. and Rana, O., editors, GECON 2010, volume 6296 of Lecture Notes in Com-

puter Science, pages 48–61. 5, 125

Silaghi, G. C., Serban, L. D., and Litan, C. M. (2011). A Time-Constrained SLA

Negotiation Strategy in Competitive Computational Grids. Future Generation

Computer Systems. online first. 5, 16, 19, 125

Silaghi, G. C., Silva, L., Domingues, P., and Arenas, A. E. (2008b). Tackling

the collusion threat in p2p-enhanced internet desktop grids. In Danelutto, M.,

Fragopoulou, P., and Getov, V., editors, Making Grids Work, pages 393–402.

Springer US. 89

201

REFERENCES

Silva, J. a. N., Veiga, L., and Ferreira, P. (2008). Heuristic for resources allocation

on utility computing infrastructures. In Proceedings of the 6th international

workshop on Middleware for grid computing, pages 9:1–9:6. ACM Press. 175

Sim, K. M. (2002). A MarketDriven Model for Designing Negotiation Agents.

Computational Intelligence, 18(4):618–637. 134, 139

Sim, K. M. (2010). Grid Resource Negotiation: Survey and New Directions.

IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications

and Reviews, 40(3):245–257. 125, 133

Singh, A. and Liu, L. (2003). Trustme: Anonymous management of trust re-

lationships in decentralized p2p systems. In P2P ’03: Proceedings of the 3rd

International Conference on Peer-to-Peer Computing, pages 142–149. IEEE

Computer Society. 31, 53, 54, 61

Singh, M., Yu, B., and Venkatraman, M. (2001). Community-based service loca-

tion. Communications of the ACM, 44(4):49–54. 38, 39, 44, 61, 65

SLA@SOI Consortium (2008). SLA@SOI - Overview. document available at

http://sla-at-soi.eu/publications/ - consulted on 13 July 2011. 125, 174

Sobolewski, M. (2002). Fiper: The federated s2s environment.

In JavaOne, Suns 2002 Worldwide Java Developer Conference.

http://sorcersoft.org/publications/papers/2420.pdf consulted on 23 April

2012. 19

Staab, E. and Engel, T. (2009). Collusion detection for grid computing. In

9th IEEE/ACM International Symposium on Cluster Computing and the Grid,

2009. CCGRID ’09., pages 412 –419. IEEE Press. 4, 91, 94

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001).

Chord: A scalable peer-to-peer lookup service for internet applications. SIG-

COMM Computer Communication Review, 31:149–160. 8

Suryanarayana, G., Taylor, R. N., Suryanarayana, G., Taylor, R. N.,

Suryanarayana, G., and Taylor, R. N. (2004). A survey of trust

202

REFERENCES

management and resource discovery technologies in peer-to-peer applica-

tions. Technical Report UCI-ISR-04-6, Institute of Software Research, UC

Irvine. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.828, con-

sulted on 10 January 2012. 27, 32, 46, 47

Talia, D. and Trunfio, P. (2005). Peer-to-peer protocols and grid services for

resource discovery on grids. In Grid Computing The New Frontier of High

Performance Computing, volume 14 of Advances in Parallel Computing, pages

83 – 103. North-Holland. 12

Tanenbaum, A. S. and van Steen, M. (2001). Distributed Systems: Principles and

Paradigms. Prentice Hall. 6

Tang, B., Moca, M., Chevalier, S., He, H., and Fedak, G. (2010). Towards

mapreduce for desktop grid computing. In 2010 International Conference on

P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pages 193 –

200. IEEE Press. 22, 90, 95

Taufer, M., Anderson, D., Cicotti, P., and Brooks, C. (2005). Homogeneous

redundancy: a technique to ensure integrity of molecular simulation results

using public computing. In 19th IEEE International Parallel and Distributed

Processing Symposium, page 119a. 93

Thain, D., Tannenbaum, T., and Livny, M. (2005). Distributed computing in

practice: the condor experience. Concurrency and Computation - Practice and

Experience, 17(2-4):323–356. 21

The Joint Task Force for Computing Curricula 2005 (2005). Computing curricula

2005; The overview report coveing undergraduate degree programs in Computer

Engineering, Computer Science, Information Systems, Information Technology

and Software Engineering. The Association for Computing Machinery (ACM),

The Association for Information Systems (AIS), The Computer Society (IEEE-

CS). 158, 161

Topi, H., Valacich, J., Wright, R., Kaiser, K., Nunamaker, J., Sipior, J. C., and

de Vreede, G. (2010). IS 2010: Curriculum Guidelines for Undergraduate De-

gree Programs in Information Systems . Association for Computing Machinery

(ACM) and Association for Information Systems (AIS). 166

203

REFERENCES

Trunfio, P., Talia, D., Papadakis, H., Fragopoulou, P., Mordacchini, M., Penna-

nen, M., Popov, K., Vlassov, V., and Haridi, S. (2007). Peer-to-Peer resource

discovery in Grids: Models and systems. Future Generation Computer Systems,

23(7):864–878. 6, 7

Tsvetovat, M. and Sycara, K. (2000). Customer coalitions in the electronic mar-

ketplace. In Proceedings of the 4th International Conference on Autonomous

Agents, pages 263–264. ACM. 95

Vishnumurthy, V., Chandrakumar, S., and Sirer, E. (2003). KARMA: A Secure

Economic Framework for Peer-to-Peer Resource Sharing. In Workshop on the

Economics of Peer-to-Peer Systems. 14

von Laszewski, G., Alunkal, B., and Veljkovic, I. (2005). Towards reputable grids.

Scalable Computing: Practice and Experience, 6(3):95–106. 31, 61, 64, 65

von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic

Behavior. Princeton University Press. 129

Vragov, R. (2005). Implicit Consumer Collusion in Auctions on the Internet.

In Proceedings of the 38th Annual Hawaii International Conference on System

Sciences, 2005. HICSS ’05., page 174c. IEEE Press. 95

Waeldrich, O., Battre, D., Brazier, F., Clark, K., Oey, M., Papaspy-

rou, A., Wieder, P., and Ziegler, W. (2011). WS-Agreement Negotia-

tion 1.0. In OGF Grid Resource Allocation Agreement Protocol (GRAAP)

WG. http://www.gridforum.org/Public Comment Docs/Documents/2011-

03/WS-Agreement-Negotiation+v1.0.pdf - consulted on 13 July 2011. 4, 18,

126, 131

Wang, Y. and Wei, J. (2011). VIAF: Verification-Based Integrity Assurance

Framework for MapReduce. In 2011 IEEE International Conference on Cloud

Computing (CLOUD), pages 300–307. IEEE Press. 95

Watanabe, K., Fukushi, M., and Horiguchi, S. (2009a). Collusion-resistant

sabotage-tolerance mechanisms for volunteer computing systems. In IEEE In-

ternational Conference on e-Business Engineering, ICEBE 2009, pages 213–

218. IEEE Press. 91

204

REFERENCES

Watanabe, K., Fukushi, M., and Horiguchi, S. (2009b). Optimal spot-checking

for computation time minimization in volunteer computing. Journal of Grid

Computing, 7:575–600. 93

Watkins, C. J. C. H. and Dayan, P. (1992). Q-Learning. Machine Learning,

8(3-4):279–292. 132

Wei, B., Fedak, G., and Cappello, F. (2005). Collaborative data distribution with

bittorrent for computational desktop grids. In 4th Intl Symposium on Parallel

and Distributed Computing (ISPDC 2005), 2005, France, pages 250–257. IEEE

Computer Society. 90

Wei, W., Du, J., Yu, T., and Gu, X. (2009). SecureMR: A Service Integrity As-

surance Framework for MapReduce. In Annual Computer Security Applications

Conference, 2009. ACSAC ’09., pages 73–82. IEEE Press. 95

WepiwÉ, G. and Simeonov, P. L. (2006). Hipeer: A highly reliable p2p system.

IEICE - Transactions on Information and Systems, E89-D:570–580. 10

White, T. (2009). Hadoop: The Definitive Guide. O’Reilly. 22

Wishart, R., Robinson, R., Indulska, J., and Jøsang, A. (2005). Superstringrep:

reputation-enhanced service discovery. In ACSC ’05: Proceedings of the

Twenty-eighth Australasian conference on Computer Science, pages 49–57.

Australian Computer Society, Inc. 43, 61

Witten, I. E. and Frank, E. (2005). Data Mining: Practical Machine Learning

Tools and Techniques (Second Edition). Morgan Kaufmann. 110

Wong, S. (2006). An authentication protocol in web-computing. In 20th Interna-

tional Parallel and Distributed Processing Symposium, IPDPS 2006., page 10

pp. IEEE Press. 94

Woodcock, J. and Davies, J. (1996). Using Z: Specification, Refinement, and

Proof. Prentice-Hall, Inc. 69

Wooldridge, M. (2009). An Introduction to MultiAgent Systems - Second Edition.

John Wiley and Sons. 2

205

REFERENCES

Wu, L., Garg, S. K., and Buyya, R. (2011). Sla-based resource allocation for

software as a service provider (saas) in cloud computing environments. In

Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, pages 195–204. IEEE Computer Society. 175

Xiong, L. and Liu, L. (2004). Peertrust: Supporting reputation-based trust for

peer-to-peer electronic communities. IEEE Transactions on Knowledge and

Data Engineering, 16(7):843–857. 31, 56, 61, 67

Yan, J., Kowalczyk, R., Lin, J., Chhetri, M. B., Goh, S. K., and Zhang, J.

(2007). Autonomous Service Level Agreement Negotiation for Service Compo-

sition Provision. Future Generation Computer Systems, 23(6):748 – 759. 125,

127, 133, 141

Yeo, C. S. and Buyya, R. (2009). Integrated risk analysis for a commercial

computing service in utility computing. Journal of Grid Computing, 7(1):1–24.

176

Yokoo, M., Conitzer, V., Sandholm, T., Ohta, N., and Iwasaki, A. (2005). Coali-

tional games in open anonymous environments. In Proceedings of the 20th Na-

tional Conference on Artificial intelligence - Volume 2, pages 509–514. AAAI

Press. 95

Yokoo, M., Sakurai, Y., and Matsubara, S. (2004). The effect of false-name bids in

combinatorial auctions: new fraud in Internet auctions. Games and Economic

Behavior, 46(1):174–188. 95

Yu, B. and Singh, M. (2002). An evidential model of distributed reputation man-

agement. In AAMAS ’02: Proceedings of the first international joint conference

on Autonomous agents and multiagent systems, pages 294–301. ACM Press. 30,

43, 49, 55, 61

Zacharia, G. and Maes, P. (2000). Trust management through reputation mech-

anisms. Applied Artificial Intelligence, 14(9):881–907. 27, 45

Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A., and Kubiatowicz, J.

(2004). Tapestry: a resilient global-scale overlay for service deployment. IEEE

Journal on Selected Areas in Communications, 22(1):41 – 53. 9

206

REFERENCES

Zhao, H., Liu, X., and Li, X. (2011). A taxonomy of peer-to-peer desktop grid

paradigms. Cluster Computing, 14:129–144. 22

Zhao, S., Lo, V., and GauthierDickey, C. (2005). Result verification and trust-

based scheduling in peer-to-peer grids. In P2P ’05: Proceedings of the Fifth

IEEE International Conference on Peer-to-Peer Computing (P2P’05), pages

31–38. IEEE Computer Society. 31, 67, 90, 91, 93

Zhou, D. and Lo, V. (2004). Cluster computing on the fly: resource discovery

in a cycle sharing peer-to-peer system. In IEEE International Symposium on

Cluster Computing and the Grid, pages 66 – 73. IEEE Press. 22

Zulkernine, F., Martin, P., Craddock, C., and Wilson, K. (2009). A Policy-Based

Middleware for Web Services SLA Negotiation. In Proceedings of the 2009 IEEE

International Conference on Web Services, pages 1043–1050. IEEE Computer

Society. 127, 133, 141

207

	Abstract
	List of Figures
	List of Tables
	1 Dependable Resource Management Tools towards Automated Collaboration in Heterogeneous Computing Environments
	1.1 Introduction
	1.2 Background and Related Work
	1.2.1 P2P systems
	1.2.1.1 Structuring P2P systems and discovering resources
	1.2.1.2 Economics of P2P systems and sabotage

	1.2.2 Service Level Agreements and Service-based P2P Systems
	1.2.3 Desktop Grids

	1.3 Reputation Management
	1.3.1 Research objective
	1.3.2 Reputation-based trust management systems
	1.3.2.1 Trust and reputation
	1.3.2.2 Reputation systems
	1.3.2.3 Using reputation in grids
	1.3.2.4 Conclusion

	1.3.3 A Model of Virtual Organizations
	1.3.4 A Utility-Based Reputation Model for VOs
	1.3.4.1 Properties of the Reputation Model
	1.3.4.2 Reputation Management for VO Service Providers
	1.3.4.3 Reputation Management for VO Users

	1.3.5 A Reputation Management System
	1.3.5.1 Usage Scenario

	1.3.6 Analysis of the Reputation Models
	1.3.6.1 VOs with reputation-rated resource providers
	1.3.6.2 VOs with reputation-rated users
	1.3.6.3 VOs with reputation-rated resource providers and rated users

	1.3.7 Conclusion and Future Work

	1.4 Sabotage Tolerance in Volunteer Computing
	1.4.1 Research objective
	1.4.2 Background
	1.4.2.1 State-of-the-art
	1.4.2.2 Sabotaging behaviors

	1.4.3 A collusion-resistant sabotage tolerance protocol
	1.4.3.1 Overview
	1.4.3.2 Statistical modeling of the voting behavior
	1.4.3.3 Spotting out naive saboteurs (M1 or M3)
	1.4.3.4 A general sabotage tolerance protocol

	1.4.4 Results and discussion
	1.4.4.1 Results
	1.4.4.2 Discussion
	1.4.4.3 Classification alternatives

	1.4.5 The Maximum Independent Set Approach
	1.4.6 Conclusion

	1.5 SLA Negotiation in Competitive Computational Grids
	1.5.1 Research objective
	1.5.2 Background and related work
	1.5.2.1 SLA negotiation formalization
	1.5.2.2 SLA negotiation in computational grids
	1.5.2.3 The Bayesian learning agent
	1.5.2.4 Why opponent learning agents for SLA negotiation? - an economic point of view

	1.5.3 The time-constrained negotiation strategy
	1.5.3.1 The General Framework
	1.5.3.2 Performance optimization

	1.5.4 Experimental Results
	1.5.4.1 AgentFSEGA against non time-constrained negotiation strategies
	1.5.4.2 AgentFSEGA's performance analysis

	1.5.5 Conclusions and future work

	1.6 Conclusion

	2 Career Development Plan
	2.1 Teaching directions
	2.1.1 Status Quo
	2.1.2 Didactic proposals

	2.2 Research directions
	2.2.1 Research group on automated collaborative systems
	2.2.2 Efficient resource management in heterogeneous clouds
	2.2.2.1 Problems
	2.2.2.2 Objectives
	2.2.2.3 Impact
	2.2.2.4 Methodology

	References

